Creating a PosSizer in Wealth-Lab Pro®

Introduction

When backtesting a Strategy in Wealth-Lab Pro® there are several position sizing methods
available. For example, you can allocate a fixed number of shares for each position, or a
fixed dollar amount. When allocating a fixed dollar amount, the number of shares is
determined by dividing the specified dollar amount by the Position's "basis price". The
"basis price" of a Position is usually the closing price of the bar on which the Position was
triggered. The actual entry price is not known until the beginning of the next bar, so the
entry price is usually different than the basis price.

In order to use more complex position sizing methods, PosSizers can be used. A PosSizer
is a a .NET class the derives from the PosSizer base class. It contains a SizePosition
method that you override to specify the exact logic to use to establish the size of each
Position in a backtest. PosSizers can use a variety of information to make this decision,
including prior trades, the equity curve, and how much cash is currently available to the
simulated account.

How PosSizers are integrated in Wealth-Lab Pro

PosSizers are one of the position sizing choices in the Portfolio Simulation section of the
position sizing drop down. Each PosSizer appears in the drop down, and optionally allows
the user to configure its parameters.

Raw Profit Mode
Ficed Dallar
Shares/Cortracts

L L R

Portfolic Simulation Mode
Starting Capital G000

Ak

Fied Dollar 60000
Shares/Cortracts
Percent of Equity
Max Percent Risk

ALl (A § A)4

WealthScript Ovemide (SetShareSize)

@ PosSizer: | Average Down with ~

uble Down

Do

— Max Entries per Day

Margin Factor: One Trade per Symbaol
Pct Winners Pos Sizing

| ok || Cancel |‘

How to Create a PosSizer

PosSizers can be built in an external .NET development tool such as Microsoft Visual Studio
or SharpDevelop. Follow these steps to create a new PosSizer:

Create a .NET class library project.

Add a reference to WealthLab.dll.

Create a new class derived from PosSizer.

Implement the properties and methods, including the SizePosition method.
Compile your class library to produce a .NET assembly DLL.

Copy the DLL into the Wealth-Lab folder.

The next time you start Wealth-Lab, your PosSizer(s) will be available in the drop
down.

Noga,rownE

Returning the Position Size

For each Position in a backtest, your PosSizer's SizePosition method will be called. This
method returns a double value which specifies the number of shares/contracts that should
be assigned to the Position currently being processed. Your PosSizer can access the current
Position object being sized via the "currentPos" parameter.

In your position sizing logic, be very careful that the PosSizer does not access any future
information. For example, the PosSizer has access to currently active Positions via the
ActivePositions property. But the individual Position objects in this list may have an
ExitBar and ExitPrice assigned, even though they are currently active at the time the
current Position is being sized.

Your PosSizer can access the current CashCurve and EquityCurve of the backtest, and
create indicators off of these values. However, because these DataSeries are being
dynamically built during the position sizing phase of backtest, a PosSizer should use the
"Value" methods to access indicator values instead of the "Series" methods. The "Value"
methods of an indicator calculate and return the indicator value each time they are called,
while the "Series" methods create new DataSeries that represent the complete indicator,
cache these DataSeries, and return the cached values on subsequent calls. For this reason,
calling "Series" indicator methods will return incorrect indicator results if "Series" is called
in multiple calls to the PosSizer's SizePosition method.

Right:
double sma = SMA.Value(EquityCurve, bar, 20);
Wrong:

DataSeries smaSeries = SMA.Series(EquityCurve, 20);
double sma = smaSeries[bar];

PosSizer Base Class

public List<Position> ActivePositions

Returns a list of Position objects that are currently "active" in the backtest. Although the
Position objects in the list are active at the point in time the current Position is being sized,
their ExitBar and ExitPrice properties will be assigned values if they were ultimately closed.

protected double CalcPositionSize(PosSizeMode mode, double posSizeValue, Bars bars,

int bar, PositionType pt, double costBasis, double riskStopLevel, double equity)

This is a helper method that you can call when you want a Position to use one of the basic
three position sizing methods: fixed share, fixed dollar, or maximum risk. Usually you
would call this method within the implementation of your PosSizer's SizePosition method.

public List<Position> Candidates

Returns a list of Position objects that represent the candidate Positions that are being sized
on the current bar, at the point in time that the SizePosition method is being called.

public DataSeries CashCurve

Returns a DataSeries object that represents the bar by bar historical cash level of the
backtest.

public List<Position> ClosedPositions

Returns a list of Position objects that have already been closed at this point in time in the
backtest.

public DataSeries EquityCurve

Returns a DataSeries object that represents the bar by bar historical equity curve of the
backtest.

public abstract string FriendlyName

You should override this property to return a short, descriptive name for the PosSizer. This
name appears in the drop down box of the position sizing selection interface.

public virtual void Initialize()

This method is called each time the PosSizer is about to be used to size Positions in a
backtest. You can override this method to perform any initialization required at this point.

public List<Position> Positions

Returns a list of Position objects that contain all of the Positions (open and closed) currently
processed by the backtest.

public abstract double SizePosition(Position currentPos, Bars bars, int bar, double
basisPrice, PositionType pt, double riskStopLevel, double equity, double cash);

Override this method and return the number of shares that the Position specified in the
"currentPos™ parameter should be assigned. Additional parameters include:

bars - The Bars object that the Position is being established on.

bar - The bar number on which the alert to enter the Position was made. PosSizers assume
that Positions in a Strategy are executed at "bar + 1", and the value here is actually the
Position's entry bar minus 1.

basisPrice - The Position's basis price. For market orders, this is the closing price of the bar
on which the alert was generated. For limit and stop orders it is the limit or stop price.

pt - The position type (long or short).

riskStopLevel - The risk stop level that was assigned by the Strategy (if any). This applies
for position sizing methods that wish to enforce a maximum loss per Position.

equity - The current equity level of the simulated account.
cash - The current cash level of the simulated account. Note that this value will decrease as
multiple Positions are sized in the same bar.

Custom PosSizer Settings

Usually you want to provide some level of customization to a PosSizer, so user's can adjust
certain parameters to control how Positions are sized. PosSizer's provide this capability by
implementing the ICustomSettings interface. If your PosSizer class implements
ICustomSettings, when it is selected from the drop down, a "Customize" button will appear
in the position sizing user interface. When users click the button, a user interface that you
define will appear, allowing them to set whatever parameters you decide are important for
the operation of your PosSizer.

When you provide key names for custom settings in ICustomSettings, you should preface
the key name with the class name of the PosSizer. This will ensure that the key value will
remain unique in the Wealth-Lab settings file that is shared by all users of the
ICustomSettings interface.

Persisting Custom Settings

PosSizers require a little extra support so that their settings can be persisted from instance
to instance. The ICustomSettings implementation above causes parameters to be
rememberd between sessions of WLP, but in order for each individual PosSizer to remember
its parameters two methods need to be overriden in the base PosSizer class.

public virtual string GetConfigString()

You should return a single string that represents the parameter values that the PosSizer
instance is using. If you're deriving from another PosSizer, such as BasicPosSizer (see
below) be sure to call the inherited method and append its return value to your own string.
BasicPosSizer uses a pipe character to delimit parameter values.

Example:

public override string GetConfigString()
{

return base.GetConfigString() + _maxEntries + "|";
}
public override void ApplyConfigString(string config)

Override this method to parse a config string in the format that was returned by
GetConfigString above.

Example:

public override void ApplyConfigString(string config)

{

base.ApplyConfigString(config);
string[] tokens = config.Split('|");

_maxEntries = Int32.Parse(tokens[4]);

¥

The BasicPosSizer Helper Class

When writing custom PosSizers, you may find that you often want to fall back on the basic
position sizing methods of Fixed Dollar, Percent of Equity, or Maximum Risk, but want to
allow the values of these methods the be dynamically assigned by your PosSizer. You then
find yourself writing similar ICustomSettings user interface UserControls that expose radio
buttons to select the three methods, and data entry fields so users can supply values for
them.

The WealthLab.PosSizers assembly contains an abstract class called BasicPosSizer that
factors all of this work into a class you can derive from. The assembly also provides an
ICustomSettings UserControl called BasicPosSizerSettings that BasicPosSizer uses in its
implementation of the ICustomSettings interface. You can use BasicPosSizerSettings as is,
or derive a new UserControl from this as a base, providing additional data entry fields for
parameters as needed.

BasicPosSizer provides additional methods and properties to help you implement a PosSizer
that can fall back on the basic position sizing methods of Fixed Dollar, Percent of Equity,
and Maximum Risk.

public double CalcBasicPositionSize(Bars bars, int bar, PositionType pt, double costBasis,
double riskStop, double equity)

You can call this method to perform the basic position sizing of Fixed Dollar, Percent of
Equity, or Maximum Risk. Which method performed depends on the value of the
PosSizeMode property of BasicPosSizer.

public void ChangeBasicSettings(PosSizerSettingsBase ui)

Call this method in your implementation of ICustomSettings.ChangeSettings if you
extended the BasicPosSizerSettings. It processes the changes of the PosSizer parameters
controlled by the BasicPosSizerSettings interface.

public double FixedDollarSize

Provides access to the Fixed Dollar position size that is defined in BasicPosSizerSettings.
public void InitializeSettings(PosSizerSettingsBase ui)

Call this method after creating an instance of an ICustomSettings UserControl that derives
from BasicPosSizerSettings. It initializes the UserControl with the parameter values that
were read from the settings file.

public double MaxRiskSize

Provides access to the Maximum Risk amount that is defined in BasicPosSizerSettings.
public double PctEquitySize

Provides access to the Percent of Equity amount that is defined in BasicPosSizerSettings.

public PosSizeMode PosSizeMode

Provides access to the position sizing mode that was selected in the BasicPosSizerSettings
interface.

public void ReadBasicSettings(lISettingsHost host)

Call this method in your implementation of ICustomSettings.ReadSetting if you extended
the BasicPosSizerSettings. It reads the basic settings from the settings file.

public void WriteBasicSettings(lSettingsHost host)

Call this method in your implementation of the ICustomSettings.WriteSettings if you
extended the BasicPosSizerSettings. It writes the basic settings to the settings file.

Example

Below is the source code for the MaxEntriesPerDay PosSizer, which extends the
BasicPosSizer, and implements ICustomSettings with a UserControl that descends from
BasicPosSizerSettings. It is designed to employ a basic position sizing method specified by
the user, but only allow a certain number of entries on any given bar.

using System;

using System.Collections.Generic;
using System.Text;

using Fidelity.Components;

using System._Windows.Forms;

namespace WealthLab.PosSizers

public class MaxEntriesPerDay : BasicPosSizer, ICustomSettings

{
//Friendly name

public override string FriendlyName

{
get
{ _
return "Max Entries per Day";
}
}

//Maximum number of entries per day

public override double SizePosition(Position currentPos, Bars bars,
int bar, double basisPrice, PositionType pt, double riskStopLevel, double
equity, double cash)

{

int takenToday = O;
for (int n = Positions.Count - 1; n >= 0; n--)
if (Positions[n].EntryBar == bar + 1)
{
takenToday++;
if (takenToday >= _maxEntries)
break;

if (takenToday >= _maxEntries)
return O;

//calculate position size
return CalcBasicPositionSize(bars, bar, pt, basisPrice,
riskStopLevel, equity);
}
//private members
private int _maxEntries = 2;
private MaxEntriesPerDaySettings _settings = null;

//1CustomSettings
#region ICustomSettings Members

public UserControl GetSettingsUl()

{
if (settings == null)

_settings = new MaxEntriesPerDaySettings();
_settings_MaxEntries = _maxEntries;
InitializeSettings(_settings);
return _settings;

}

public void ChangeSettings(UserControl ui)

{
_maxEntries = _settings.MaxEntries;
ChangeBasicSettings(_settings);

}

public void ReadSettings(lSettingsHost host)

{
_maxEntries = host.Get('MaxEntriesPerDay.MaxEntries™, 2);
ReadBasicSettings(host);

}

public void WriteSettings(lSettingsHost host)

host.Set("'"MaxEntriesPerDay . MaxEntries™, _maxEntries);
WriteBasicSettings(host);
}

#endregion

Fidelity Brokerage Services LLC, Member NYSE, SIPC
900 Salem Street, Smithfield, Rl 02917

