
Creating Chart Styles for Wealth-Lab Pro®

Introduction

This document explains how to create new Chart Styles for Wealth-Lab Pro®. In Wealth-Lab Pro, all
Chart Styles are classes that derive from the ChartStyle abstract base class. This applies to the
standard chart styles that ship with the product, such as Line, Candlestick, and Bar Chart Styles. If
you want to provide a custom settings interface for your Chart Style, your class can also implement
the ICustomSettings interface, described below.

To build your own Chart Style, the process is simple:

1. Create a Class Library project in Visual Studio that will contain one or more Chart Styles.
2. Add a reference to the WealthLab.dll assembly in your project's References section. This

assembly contains classes in the WealthLab namespace.
3. Create a class (or classes) that derive from the ChartStyle base class. ChartStyle is defined

in the WealthLab namespace.

To test your Chart Style, do the following:

• Drop your Chart Style Assembly (created above) into the Wealth-Lab Pro installation folder.
• Execute Wealth-Lab Pro. Your Chart Style(s) should be visible and available.

ChartStyle Base Class

Your Chart Style must override some abstract methods defined in the ChartStyle base class. The
ChartStyle base class also contains a number of properties and methods that will find useful when
initializing the data for your chart style, and rendering the chart.

Method Overrides

You need to override the following abstract ChartStyle methods in your derived class.

public override void Initialize()

Wealth-Lab Pro calls this method whenever the symbol changes on a chart. Here you can build any
internal data structures that you need. Access the Bars property that is provided in ChartStyle to
obtain the bar data that is being charted. If you are implementing a simple Chart Style, it is quite
likely that you will not need to do anything here. But if your Chart Style is more complex, you may
need to create internal data structures that are based on the underlying open, high, low, close and
volume data available in the Bars property.

protected override void InitializeBarWidths()

Wealth-Lab Pro calls this method whenever the width of the individual bars need to be calculated. See
the section below on Variable Bar Widths for more information.

public override void RenderBars(Graphics g)

This is the meat of your Chart Style. Wealth-Lab Pro calls this whenever the chart bars need to be
rendered. You will render the bars of the chart on the Graphics object provided as a parameter. The
bar data comes from the Bars object that is also passed to you. You'll use the IChartHost interface
to map bar/price coordinates to pixel x/y coordinates on the Graphics object. The section below goes
into more detail on rendering the bars.

public override string FriendlyName

In the property get, return a "friendly" name that describes the Chart Style in a compact form.
Wealth-Lab Pro will use your friendly name as the caption for menu items or other controls that need
to represent your Chart Style.

public override Bitmap Glyph

In the property get, you should return a 16x16 Image that Wealth-Lab will use when it needs to
represent your Chart Style on a button or menu control. Use Fuchsia as the transparent color for
your image.

Variable Bar Width Chart Styles

Most Chart Styles, including the common Line, Candlestick, and Bar, render bars that are all the same
width. Other, more complex Chart Styles, like Equivolume, Kagi, and Point & Figure, use variable
width bars, where each bar can have a different width, or certain bars are not rendered on the chart
at all. If your Chart Style will employ variable width bars, you need to perform some special
processing in the InitializeBarWidths method.

You need to tell Wealth-Lab the width of each individual bar in your implementation of
InitializeBarWidths. Accomplish this by looping through all of the bars of the Bars property that
the ChartStyle base class exposes to you. You can examine the open, high, low, close and volume
values to determine how wide a bar needs to be.

When calculating the width of each bar, you should also consider the default bar spacing that the user
has established on their chart. Your variable-width bars might take the chart's bar spacing into
account when determining individual bar width. Obtain the current bar spacing from the BarSpacing
property that is also provided by the ChartStyle base class.

For each bar of the chart, once you calculate that bar's width, call SetBarWidth to communicate this
value back to Wealth-Lab. Some Chart Styles suppress certain bars, and group them into a single bar
for rendering. If certain bars should not be drawn, call SetBarWidth for these bars and pass zero as
the width parameter.

Rendering the Bars

The RenderBars method is called whenever the chart needs to be drawn. You only need to draw the
bars of the Bars property that are visible on the chart. Use the properties RightEdgeBar and
LeftEdgeBar to determine the range of bars that needs to be drawn. Typically, you will use a for
loop such as the one below as the main drawing loop:

for (int bar = LeftEdgeBar; bar <= RightEdgeBar; bar++)
{
 //Render this bar
}

To determine where to draw a bar, you will need to convert the bar number to a horizontal (x) pixel
coordinate, and convert price values to vertical (y) pixel coordinates. Use ConvertBarToX to convert
a bar number of an x pixel coordinate.

Converting price values to y coordinates is just a bit more complicated. You first need the pane that
the bar is being drawn on, this is always the price pane. Use the PricePane property to get an

instance of a ChartPane class that represents the price pane. You can then call the ChartPane's
ConvertValueToY method to convert a price value to a vertical (y) pixel coordinate.

For each bar that you render, you should call GetBarColor to determine the color of the bar. The
color of the bar is normally based on whether the bar is considered an "up" bar or a "down" bar; if the
bar closes higher than it's open it is considered "up". The underlying ChartRenderer component can
associate two different colors for these values. But individual bars may be assigned their own colors
in a variety of ways, so it is important to use GetBarColor to get the correct color of each bar that
you draw.

Rendering the Ghost Bar

When the ShouldDrawGhostBar property is true, you can optionally render the ghost bar. Access
the horizontal (x) pixel position of the ghost bar from the GhostBarXPosition property. To get at the
partial ghost bar values of the Bars object, use Open.PartialValue, High.PartialValue, etc. Use
GhostBarColor to access the color to use for the ghost bar.

ChartStyle Properties and Methods

The ChartStyle base class contains a number of properties and methods that are useful when
initializing and rendering Chart Styles. Since your class derives from ChartStyle, it automatically has
access to all of this functionality.

public Bars Bars

Provides access to the Bars object that is being charted. The Bars object contains a Count property,
and one DataSeries each for the chart's Open, High, Low, Close, and Volume values. To get at the
partial Ghost Bar values of the Bars object, use Open.PartialValue, High.PartialValue, etc.

public int LeftEdgeBar
public int RightEdgeBar

These properties return the leftmost and rightmost bars that should be rendered on the chart. Bar
numbers are indexed starting at zero and ending at Bars.Count - 1.

public int ConvertBarToX(int bar)

Returns the horizontal (x) pixel coordinate for the specified bar number. If this bar is not in the
current visible region of the chart, this method returns -1.

public int ConvertXToBar(int x)

Converts a horizontal (x) pixel coordinate to the closest matching bar number. If the specified pixel
coordinate does not map to a valid bar number, the method returns -1.

public bool ShouldDrawGhostBar

Returns true if partial bar data exist and the ghost bar should be rendered, otherwise false.

public int GhostBarXPosition

Returns the horizontal (x) pixel coordinate for the ghost bar.

public Color BackgroundColor

This property returns the background color used for the chart.

public Color GetBarColor(int bar)

Returns the color that should be used to render an individual bar.

public Color GhostBarColor

Returns the color that should be used to render the ghost bar.

public int BarSpacing

This property returns the current bar spacing that is established for the chart. Use this value when
initializing bar widths if your Chart Style supports variable-width bars.

public int GetBarWidth(int bar)

Returns the width of an individual bar.

public void SetBarWidth(int bar, int value)

Sets the width of an individual bar. Only call this method if your Chart Style supports variable width
bars. And if it does, you should call SetBarWidth for each bar in the supplied Bars object in the
InitializeBarWidths method.

public ChartPane PricePane

This property returns the instance of the price pane of the chart. Use the ChartPane.ValueToY
method to convert price values to vertical (y) pixel coordinates.

public ChartPane VolumePane

This property returns the instance of the volume pane of the chart. Use this instance's
ChartPane.ValueToY method to convert volume values to vertical (y) pixel coordinates.

public IList<ChartPane> Panes

This property returns a list of ChartPane objects that represent all of the panes on the chart.

public int ChartWidth

This property returns the width of the chart being drawn, in pixels.

public int ChartHeight

This property returns the height of the chart being drawn, in pixels.

ICustomSettings Interface

Your Chart Style class can optionally implement the ICustomSettings interface to support user-
configurable custom settings. You must then define a UserControl-derived class that contains the
user interface for the Chart Style's settings. Wealth-Lab obtains your UserControl and communicates
about the settings using the ICustomSettings interface.

• ICustomSettings documentation

When defining keys for your custom settings values, prefix the key name with the class name of the
ChartStyle, to avoid name collisions in the custom settings file. See the example below.

Chart Style Example

The example code below renders a line based chart. For more complex styles you will typically need
to access the Bar's Open, High, and Low values in additional to Close.

/*
 LineChartStyle
 Implements the Line chart ChartStyle, simply draw a line from close to close
*/

using System;
using System.Collections.Generic;
using System.Text;
using System.Drawing;
using WealthLab;
using Fidelity.Components;

namespace WealthLab.ChartStyles
{
 public class LineChartStyle : ChartStyle, ICustomSettings
 {
 //---*** Methods to override ***---

 //Nothing to do in Initialize
 public override void Initialize()
 {
 }

 //No initialization needed, fixed bar width chart style
 protected override void InitializeBarWidths()
 {
 }

 //Render line chart
 public override void RenderBars(Graphics g)
 {
 //Set initial position of line
 int x = ConvertBarToX(LeftEdgeBar);
 int y = PricePane.ConvertValueToY(Bars.Close[LeftEdgeBar]);
 int x2, y2;

 //Create a round-capped pen for drawing the line chart
 Pen PenLine = new Pen(Color.Black);
 PenLine.Width = _lineWidth;
 PenLine.StartCap = System.Drawing.Drawing2D.LineCap.Round;
 PenLine.EndCap = PenLine.StartCap;

 //Main bar rendering loop
 for (int bar = LeftEdgeBar + 1; bar <= RightEdgeBar; bar++)
 {
 //Determine color to draw line
 PenLine.Color = GetBarColor(bar);

 //Get the destination point of the line
 x2 = ConvertBarToX(bar);
 y2 = PricePane.ConvertValueToY(Bars.Close[bar]);

 //Draw the line
 g.DrawLine(PenLine, x, y, x2, y2);

 //destination point becomes source point of next line
 x = x2;
 y = y2;
 }
 //Draw line to ghost bar (if displayed)
 if (ShouldDrawGhostBar)
 {

 x2 = GhostBarXPosition;
 y2 = PricePane.ConvertValueToY(Bars.Close.PartialValue);
 PenLine.Color = GhostBarColor;
 g.DrawLine(PenLine, x, y, x2, y2);
 }

 //Dispose of the Pen resource
 PenLine.Dispose();
 }

 //Return the friendly name of this ChartStyle
 public override string FriendlyName
 {
 get
 {
 return "Line";
 }
 }

 //Get 16x16 image
 public override Bitmap Glyph
 {
 get
 {
 return Properties.Resources.LineChartStyle;
 }
 }

 //---*** ICustomSettings implementation ***---

 //Changes to the UI have been accepted
 public void ChangeSettings(System.Windows.Forms.UserControl ui)
 {
 _lineWidth = (int)_settingsUI.numWidth.Value;
 }

 //Read default settings from host
 public void ReadSettings(ISettingsHost host)
 {
 _lineWidth = host.Get("LineChartStyle.LineWidth", 1);
 }

 //Return the settings UI
 public System.Windows.Forms.UserControl GetSettingsUI()
 {
 if (_settingsUI == null)
 {
 _settingsUI = new LineChartStyleSettings();
 _settingsUI.numWidth.Value = _lineWidth;
 }
 return _settingsUI;
 }

 //Write settings value to host
 public void WriteSettings(ISettingsHost host)
 {
 host.Set("LineChartStyle.LineWidth", _lineWidth);
 }

 //---*** Private members and methods ***---

 //Private fields
 private LineChartStyleSettings _settingsUI;
 private int _lineWidth = 1;
 }
}

Fidelity Brokerage Services LLC, Member NYSE, SIPC
900 Salem Street, Smithfield, RI 02917

