
Creating an Indicator Library in Wealth-Lab Pro®

Introduction

This article explains how to create technical indicator libraries for Wealth-Lab Pro®. These libraries
contain compiled indicators that integrate into Wealth-Lab Pro and behave exactly like the indicators
that ship with the product. They appear in their own folder in the Indicators list, and you can drag
and drop them onto a chart and use them in General Indicator Wizard rules.

Building an Indicator Library requires a .NET development tool such as Microsoft Visual Studio or the
free SharpDevelop, so this article is geared toward developers familiar with such a tool. If you do not
want to get down to this level of complexity, you should know that you can also program and plot
indicators directly in the Strategy code in Wealth-Lab Pro.

Indicator Library Basics

If you've stuck with the article this far, let's get into the nuts and bolts of what an Indicator Library is.
In Wealth-Lab Pro, each individual indicator is implemented as a class that derives from the
DataSeries base class. DataSeries manages a series of values (type double), and an associated list
of DateTimes that represent a time-series of values.

Constructor

DataSeries can be created using one of 2 different constructors. The constructors represent the
underlying data that the DataSeries is based on, which can be another DataSeries, or a Bars object
(a Bars objects represents a complete OHLC/V data history for a security.)

When you create a new indicator class, create a constructor that matches one of the two DataSeries
constructors, and calls the base constructor. If your indicator operates on a single DataSeries (for
example, a Moving Average), select the constructor that takes a DataSeries parameter. If, however,
your indicator requires open, high and low information (such as a Stochastic), or some other
combination, use the constructor that take a Bars parameter.

Example using DataSeries

public SMA(DataSeries ds, int period, string description)
: base(ds, description)

Example using Bars

public StochD(Bars bars, int period, int smooth, string description)
: base(bars, description)

Note that in each case, the base constructor is called. This actually populates the DataSeries with
zeroes, so you are all set to work with a fully populated series of values. It is now your job in the
constructor to calculate the values of the indicator bar by bar, as described below.

Notice that the constructors also take a string parameter called description. This string represents a
unique description of the indicator including its parameters. It is created in the "Series" static
method, described below.

Your indicator can also take a number of optional parameters, like the "period" parameter of a moving
average. Restrict these additional parameters to the following .NET types:

• DataSeries
• any enumerated type
• Bars (represents historical OHLC/V bars)
• Int32
• Double
• Boolean
• String
• DateTime

Assigning the Indicator Values

The indicator should assign its values directly in the constructor. Initially, the indicator is pre-
populated with zeroes. Use the Count property to determine how many values to calculate and
assign. Use the indexer access method (this[]) to assign values to the indicator as they are
calculated.

To access individual values in a "source" DataSeries, use the built-in indexer (source[] notation).
To access values in a source Bars object, use its Open, High, Low, Close and Volume properties,
which are themselves DataSeries objects (bars.Open[]).

The sample code below populates the Simple Moving Average indicator.

//Calculate SMA values
for (int bar = period - 1; bar < ds.Count; bar++)
{
 double sum = 0;
 for (int innerBar = bar; innerBar > bar - period; innerBar--)
 sum += ds[innerBar];
 this[bar] = sum / period;
}

Controlling the First Plotted Bar

You can suppress plotting of initial values of your indicator. To accomplish this, set the
FirstValidValue property to the value of the first bar that should be plotted. For our Simple Moving
Average example, FirstValidValue should be set to the value of period-1. For example, if we have a
30 period SMA, the first 29 bars (bars 0 through 28) do not have valid values, and the first bar that
has a valid value is the 30th bar, bar number 29.

Static Series Method

The static Series method is what Strategy code in Wealth-Lab 5.x will call to create instances of your
indicator, and when it is dropped onto a chart. The Series method should have the same parameters
as the constructor, minus the description. Inside the Series method, an instance of your indicator
should be created, using the "new" keyword, and returned.

Follow the steps below in the static Series method:

1. Build a string description of the indicator based on the parameters that were passed
2. Sees if an indicator with this description already exists in the indicator Cache (see below)

3. If so:
1. Return the instance of the cached indicator

4. If not:
1. Use the "new" keyword to create an instance of the indicator using the supplied

parameters and the description string that was built in (1) above
2. Save this indicator instance to the Cache (see below)
3. return the instance

Below is the code for the Series method of the SMA (Simple Moving Average) indicator.

//Static Series method returns an instance of the indicator
public static SMA Series(DataSeries ds, int period)
{
 //Build description
 string description = "SMA(" + ds.Description + "," + period + ")";

 //See if it exists in the cache
 if (ds.Cache.ContainsKey(description))
 return (SMA)ds.Cache[description];

 //Create SMA, cache it, return it
 SMA sma = new SMA(ds, period, description);
 ds.Cache[description] = sma;
 return sma;
}

Building the Description

The first step in the implementation of the indicator's static Series method is creating a description
string that uniquely describes the indicator. This is composed of the indicator name, then the
parameter values (if any) enclosed in parenthesis. Note that the Description property of the source
DataSeries is used when building the description. This ensures that the resulting description string
will be unique.

If the indicator was applied to closing price with a period of 20, the resulting description would be:

SMA(Close,20)

Returning a Cached Copy

DataSeries and Bars objects have a property called Cache, which is a Dictionary<string,
DataSeries>. While working with the Cache is not mandatory, you should cooperate with the
caching mechanism to avoid multiple copies of your indicators with the same parameter values getting
needlessly created.

The Series method sees if the indicator is already in the Cache by using the ContainsKey method of
the Dictionary object. The indicator's description string is always the key.

If the Cache contains the indicator, Series retrieves it from the Cache, and then casts it back to the
actual indicator type. The Cache Dictionary stores all of the indicators as DataSeries objects, so
you need to cast the object back to your specific type before returning it.

Creating a New Instance

If the indicator is not found in the Cache, then the Series method creates an instance of it using the
constructor, by using the C# "new" keyword. Your indicator should have a public constructor that
accepts the same parameters as the Series method call, and an additional string parameter that
represents the description that should be used for the indicator. Supplying the description as an
additional parameter to the constructor serves two roles:

1. It enforces that the same string is used in the Cache that is used in the indicator's
Description property.

2. It gives power users the flexibility to use the new operator to create indicator instances, and
provide their own descriptions. Indicators created using the new operator do not participate
in the caching mechanism.

Once the Series method creates the instance of the indicator, it adds it to the Cache, and returns it
to the caller.

Creating the IndicatorHelper

In order to allow your indicator to be published and visible in Wealth-Lab Pro 5.x, you need to create a
helper class that describes the indicator. The helper class is an object that derives from the
IndicatorHelper base class, described below. You can create the helper class in the same source
code file as the indicator.

IndicatorHelper Base Class Properties

public abstract Type IndicatorType

Return a reference to the Type object of the indicator that this helper is supporting.

public abstract IList<string> ParameterDescriptions

Return a string list, one string item for each parameter that your indicator accepts in its constructor.
Provide a brief (one or two word) description of the parameters. These descriptions are used as labels
in the Indicator Parameters form when the indicator is dropped onto a chart. Internally, you can use
any class that exposes the IList interface. A typical implementation will use a static string array that
is populated when it is declared (see SMA example).

public abstract IList<object> ParameterDefaultValues

Return a list of objects, one for each parameter that your indicator accepts in its constructor.
Populate the list with the default values that the parameters should assume when an indicator is
dropped onto a chart. You can use any class that exposes an IList interface to implement this in your
helper class. A typical implementation will use a static array of objects that is populated when it is
declared (see SMA example). For certain parameter types, you will use special values in the list:

Bars parameters
You should set the value of the object to the BarsDataType.Bars enum value. This lets Wealth-Lab
know that the indicator accepts a Bars object for this parameter.

DataSeries parameters
You should set the value of the object to one of the CoreDataSeries enum values. These can be
either open, high, low, close, or volume.

enum parameters
You can use any custom (or existing) enumerated type as a parameter. The indicator parameters
form will display a drop down that is filled with the string values of the enumeration that the user can

then select from.

int parameters
You can assign an int value directly that corresponds to the default value that the parameter should
assume. Or, you can assign an instance of the RangeBoundInt32 class, which takes a default value,
minimum, and maximum values in its constructor. This will limit the range of values that users can
enter in the Indicator Parameters form for this parameter.

double parameters
Like int, above, you can assign a double value directly, or use the RangeBoundDouble class to restrict
the parameter's value.

string parameters
You can assign a string which will be the default value, and will allow the user to enter any other
string in a text box in the Indicators Parameters form.

DateTime parameters
If you want to DateTimePicker that is created in the Indicator Parameters form to be a time picker,
supply a default DateTime value that contains zero for the year, month, and day portions.

public abstract Color DefaultColor

Return the color that should be used by default when plotting the indicator.

public virtual LineStyle DefaultStyle

Return the LineStyle (Solid, Dotted, Dashed or Histogram) that should be used when plotting the
indicator. "Solid" is the default implementation, so if you want your indicator to render as a solid line
by default you do not have to override this property.

public virtual int DefaultWidth

Return the default line width that should be used when plotting the indicator. The value returned in
the default implementation is 1.

public abstract string Description

Return a description of the indicator, a few sentences is recommended. This description appears at
the bottom of the Indicator List when you click on the indicator.

public virtual string URL

Return a URL that the user could navigate to to learn more about the indicator. Wealth-Lab will
launch a web browser to the target URL if the user clicks the "More Info..." link in the Indicator List. If
you do not have a URL, return a blank string.

public virtual string TargetPane

Determines where the indicator should be plotted when it is dropped onto a chart. If you want to
indicator to always plot in the Price Pane, return "P", or for the Volume Pane return "V". Return a
blank string if the indicator should just plot in the pane it was dropped in. Otherwise, pass a different
string (typically the indicator's class name) to cause a new pane to be created for the indicator. When
an indicator is dropped, Wealth-Lab will try to find a pane that already exists with your specified
TargetPane string. If it finds one, the indicator will be plotted in this pane and a new pane not
created. This feature can be used to cause "families" of related indicators to plot in the same pane
(such as ADX, ADXR, DI+, DI-).

public virtual Type PartnerBandIndicatorType

If your indicator is a type that is always paired with another, such as BBandUpper or BBandLower, you
can return the Type of the partner indicator by overriding this property. If you do this, Wealth-Lab
will allow users to plot both bands when either one of the pair is dropped on a chart.

public virtual Color DefaultBandColor

If your indicator is part of a pair, specify here the default color that should be suggested when the
user selects to fill the band.

public virtual bool IsOscillator

Override and return true if your indicator should be able to be plotted as an Oscillator, and overbought
and oversold regions filled with different colors. If you do so, you can override the Oscillator methods
below to customize the default behavior.

public virtual double OscillatorOverboughtValue

Determines the overbought value of the Oscillator. Values plotted above this value will be filled with
the color specified below. The default value is 0.

public virtual double OscillatorOversoldValue

Determines the oversold value of the Oscillator. Values plotted below this value will be filled with the
color specified below. The default value is 0.

public virtual Color OscillatorOverboughtColor

Determines that color that will be used to fill areas of the Oscillator that extend into overbought
territory. The default is Blue.

public virtual Color OscillatorOversoldColor

Determines that color that will be used to fill areas of the Oscillator that decline into oversold
territory. The default is Red.

public virtual Bitmap Glyph

Override the Glyph property if you want a custom image to appear in the Indicators List in Wealth-Lab
Pro for this indicator. The custom image should be 16x16 in size, and use Fuchsia as a background
color.

Providing a Static Value Method

This is completely optional, and more of a convention than part of the formal indicator interface. A
static Value method will allow your indicator class to calculate and return a value "on the fly" for a
particular bar number, without having to go through the overhead of creating a complete instance of
the indicator. This corresponds to the "Single Calc Mode" that was available in previous Wealth-Lab
versions. If you decide to support this convention, implement a static Value method that accepts the
same parameters as your indicator's constructor, with the addition of an int parameter that passes
the bar number.

Below is an example of the static Value method for the Simple Moving Average indicator.

//This static method allows ad-hoc calculation of SMAs (single calc mode)
public static double Value(int bar, DataSeries ds, int period)
{
 if (ds.Count < period)

 return 0;
 else
 {
 double sum = 0;
 for(int i = bar; i > bar - period; i--)
 sum += ds[i];
 return sum / period;
 }
}

Using Indicators in WealthScript Code

WealthScript trading system will use indicators by using your static Series methods. Example:

//Create moving averages
DataSeries SMA20 = SMA.Series(Close, 20);
DataSeries SMA30 = SMA.Series(Close, 30);

Power users can use the new operator and create instances, providing whatever description
they feel is appropriate. These indicators can be plotted, and the tooltip will use the
description that they provided in the constructor call. Example:

DataSeries SMA20 = new SMA(Close, 20, "20 period SMA");
DataSeries SMA30 = new SMA(High, 10, "10 day SMA of Highs");

Providing a Custom Image for the Indicator Library

In Wealth-Lab Pro, your Indicator Library appears as a new folder in the Indicators List tool. The
indicators in your Library appear as items under the folder node. By default, Wealth-Lab renders the
folder node using a standard open/closed folder image. You can replace this standard folder image
with a custom image. To do so, add a bitmap resource to your Indicator Library assembly, and make
sure to set its build action to "Embedded Resource" in Visual Studio. The bitmap must be named
glyph.bmp, should be 16x16 pixels in size, and should use Fuchsia as a background color.

Simple Moving Average Example

The following code contains the complete implementation of the Simple Moving Average (SMA)
indicator, and its associated helper class.

/*
 SMA
 Simple Moving Average indicator
*/

using System;
using System.Collections.Generic;
using System.Text;
using System.Drawing;
using WealthLab;

namespace WealthLab.Indicators
{
 //SMA Indicator class
 public class SMA : DataSeries
 {

 //---*** Public interface ***---

 //Static Series method returns an instance of the indicator
 public static SMA Series(DataSeries ds, int period)
 {
 //Build description
 string description = "SMA(" + ds.Description + "," + period + ")";

 //See if it exists in the cache
 if (ds.Cache.ContainsKey(description))
 return (SMA)ds.Cache[description];

 //Create SMA, cache it, return it
 SMA sma = new SMA(ds, period, description);
 ds.Cache[description] = sma;
 return sma;
 }

 //This static method allows ad-hoc calculation of SMAs (single calc mode)
 public static double Value(int bar, DataSeries ds, int period)
 {
 if (ds.Count < period)
 return 0;
 else
 {
 double sum = 0;
 for(int i = bar; i > bar - period; i--)
 sum += ds[i];
 return sum / period;
 }
 }

 //Constructor
 public SMA(DataSeries ds, int period, string description)
 : base(ds, description)
 {
 //Remember parameters
 _sourceSeries = ds;
 _period = period;

 //Assign first bar that contains indicator data
 FirstValidValue = period - 1 + ds.FirstValidValue;

 //Calculate moving average values
 for (int bar = period - 1; bar < ds.Count; bar++)
 {
 double sum = 0;
 for (int innerBar = bar; innerBar > bar - period; innerBar--)
 sum += ds[innerBar];
 this[bar] = sum / period;
 }
 }

 //Calculate a value for a partial bar
 public override void CalculatePartialValue()
 {
 if (_sourceSeries.Count < _period - 1 || _sourceSeries.PartialValue == Double.NaN)
 PartialValue = Double.NaN;
 else
 {
 double sum = 0;
 for (int bar = _sourceSeries.Count - _period + 1; bar < _sourceSeries.Count; bar++)
 sum += _sourceSeries[bar];
 sum += _sourceSeries.PartialValue;
 PartialValue = sum / _period;
 }

 }

 //---*** Private members ***---
 DataSeries _sourceSeries;
 int _period;
 }

 //Helper class that allows SMA to work well in WL Pro
 public class SMAHelper : IndicatorHelper
 {
 //Return suggested default values
 public override IList<object> ParameterDefaultValues
 {
 get
 {
 return _paramDefaults;
 }
 }

 //Return parameter descriptions
 public override IList<string> ParameterDescriptions
 {
 get
 {
 return _paramNames;
 }
 }

 //Return default color
 public override Color DefaultColor
 {
 get
 {
 return Color.Red;
 }
 }

 //Return a reference to supported indicator type
 public override Type IndicatorType
 {
 get
 {
 return typeof(SMA);
 }
 }

 //Return a description of the indicator
 public override string Description
 {
 get
 {
 return @"The Simple Moving Average indicator calculates the average of a set of values over a specified period.";
 }
 }

 //Return a URL for more info
 public override string URL
 {
 get
 {
 return @"http://www.investopedia.com/terms/s/sma.asp";
 }
 }

 //Private members
 private static object[] _paramDefaults = { CoreDataSeries.Close, new RangeBoundInt32(20, 2, Int32.MaxValue) };

 private static string[] _paramNames = { "Source", "Period" };
 }
}

