
Creating Optimizers in Wealth-Lab Pro®
Introduction

Wealth-Lab Pro® includes the ability to "optimize" a trading Strategy. The process of
optimization consists of trying a range of different parameter values in succession and
analyzing the results of all of the runs. Optimization can help determine if a trading
Strategy is robust, or is the result of a statistical fluke.

In Wealth-Lab Pro, the optimization process is extendible via the Optimizer base class.
Classes that derive from this base implement an optimization algorithm that can be used in
the product. WL comes with two concrete implementations out of the box, the Exhaustive
and MonteCarlo methods, but programmers can create their own Optimizers that integrate
seamlessly with the software.

Creating a new Optimizer

To create a new Optimizer, start with a .NET class library assembly in your development
tool of choice. Add a reference to the WealthLab.DLL assembly that you'll find in the WL Pro
executable folder. Create a new class and assign Optimizer as the base class. Be sure to
add "WealthLab" to your source code's using statement so your library can locate the
Optimizer base class.

The Optimization base class consists of a number of properties and methods, some
informational, and some you must override. The primary methods involved in performing
the optimization are FirstRun and NextRun. WL calls FirstRun the first time an
optimization is started. Here you will normally set the WealthScript parameter values to
their starting values. WL will then execute the Strategy using the parameter values that
you assigned.

Example of Exhaustive FirstRun method:

//Set the parameters to their starting values
public override void FirstRun()
{
 foreach (StrategyParameter sp in WealthScript.Parameters)
 sp.Value = sp.Start;
}

WL then calls the NextRun method in your Optimizer class, passing as parameters the
results of the previous optimization run. Here you should change the WealthScript
parameters to the next set of values that should be tested. Return true from NextRun if
another optimization run should be executed, or false if the optimization is completed at this
point.

Finally, WL calls RunCompleted, allowing your Optimizer a chance to update its custom
user interface tabs, if it has created any (see below).

Setting the Parameters

The job of the FirstRun and NextRun methods is to assign values to the parameters of the
Strategy that is being optimized. You can do this by accessing the WealthScript property
of the Optimization base class. The WealthScript property returns the instance of the
WealthScript-derived class that represents the Strategy being executed. It contains a
property called Parameters which is of type List<StrategyParameter>. Each
StrategyParameter instance in the list has properties that return the Start, Stop, and
Step values, and has a property called Value that you should assign within
FirstRun/NextRun.

Examining the Results of an Optimization Run

When WL calls the NextRun method, it passes your Optimizer two parameters that
contain information about the results of the previous optimization run. These two
parameters are:

SystemPerformance sp - Contains an instance of a SystemPerformance class that
contains standard performance results and equity curves of the previous optimization run.

OptimizationResult or - Contains an instance of an OptimizationResults object that
contains the parameter values that were tested, and the results that are specific to the
Scorecard that was selected by the user during the optimization (see below).

When WLP has completed an optimization, it calls the RunCompleted method of your
Optimizer, and passes a parameter of type OptimizationResultsList, which contains a
list of OptimizationResult objects in the Results property that consists of the results for
all runs.

Adding Custom Tabs

Your Optimizer can install and populate custom tabs in the optimization user interface. To
achieve this functionality, override the Optimizer's virtual Initialize method, which gets
called when they user selects your optimization method from the drop down list. Within
your method body, access the Optimizer.Host property, which implements the
IOptimizationHost interface. This interface contains a method called CreateTab, in which
you pass the text that should appear in the new tab, as well as a UserControl derived
object that contains the body of the tab.

When WL completed an optimization, it calls RunCompleted. Here you can update the
user interface in your custom tab(s). Also, when the user moves the slider values, WL will
call Optimizer's RefreshViews method. If your user interface needs to respond to the
slider changes, do so here. You access the current values of the parameters via
WealthScript.StrategyParameters[x].Value.

Optimizer Base Class

public abstract string Description

Return a few lines of description that explains the underlying method your Optimizer uses.

public abstract void FirstRun();

WL calls this method at the beginning of an optimization run. You should assign the
StrategyParameter Values of the WealthScript object to the values that they should
assume for the first optimization run.

public abstract string FriendlyName

Return a brief name for your Optimizer. This name appears in the optimization methods
drop down list in the optimization user interface.

public IOptimizationHost Host

Returns an instance of the IOptimizationHost interface (see below).

public abstract void Initialize

WLP calls this method when the optimization method is selected in the drop down list. Here
you can perform variable initialization, as well as the creation of custom user interface tabs.

public abstract bool NextRun(SystemPerformance sp, OptimizationResult or)

Override this method to assign the StrategyParameter values for the next optimization
run. The SystemPerformance object contains the complete performance results for the
previous run, including equity curves. The OptimizationResult object contains the user-
selected Scorecard results from the previous run, and the strategy parameter values that
were used for that run.
public abstract double NumberOfRuns

Return the number of runs that would result if the user begins an optimization.
public IPrintHost PrintHost

Returns an instance of the IPrintHost interface, which allows your Optimizer to participate
in printing.
public virtual void RefreshViews

WLP calls this method whenever the user changes a parameter slider. If your Optimizer
creates custom user interface tabs that need to respond to these changes, update their
interfaces here.
public virtual void RunCompleted(OptimizationResultList results)

WLP calls this method when an optimization run is completed. Here you can populate the
results of custom user interface tabs, if applicable.

public Strategy Strategy

Returns the instance of the Strategy that is being optimized.

public WealthScript WealthScript

Returns the instance of the WealthScript-derived class that represents the Strategy being
optimized. Access the parameters of the Strategy via the StrategyParameters property,
which is a List<StrategyParameter>.

IOptimizationHost Interface

An instance of this interface is available via the Optimizer's Host property.

void CreateTab(string text, UserControl uc);

Allows you to create custom tabs for your Optimizer that can depict the optimization results
using any user interface you desire. The first parameter is the text of the resulting tab, and
the second parameter is a UserControl derived object that contains the user interface that
should appear in the tab. If you want to create custom tabs in your Optimizer, you should
call this method in the Initialize method of your Optimizer derived class.
IList<string> MetricNames

Returns a list of strings that contain the names of the performance metrics in the
Scorecard that the user has currently selected for optimization.

OptimizationResult Class

This class represents the results for a single optimization run. Your Optimizer is passed an
instance during the NextRun method. This instance contains the results of the previous
optimization run. Also, the RunCompleted method contains a parameter that consists of a
list of OptimizationResult objects that represent all of the optimization results.

public List<double> ParameterValues

Contains a list of double values that contains the strategy parameter values that were used
for this optimization run.
public List<double> Results

Contains a list of double values that contains the performance metric results for the metrics
in the Scorecard that was selected by the user for this optimization run. You can obtain
the corresponding metric names by accessing the Host.MetricNames property of your
Optimizer.
public string Symbol

Returns the symbol that this optimization run was based on.

OptimizationResultList Class

This class contains a list of OptimizationResult objects accessed via the Results
property. It is passed as a parameter in the Optimizer.RunCompleted method. The class
also contain a number of other public properties and methods that are used by the Wealth-
Lab pro client and not intended for use by custom Optimizers.

Fidelity Brokerage Services LLC, Member NYSE, SIPC
900 Salem Street, Smithfield, RI 02917

