Transaction Class
Alert List =>
Backtester.Orders

Wealth-Lab 7: Transaction

Alert Object
The Alert object represents a trade that needs to be placed on the following bar.
Remarks

e To access the current symbol (or symbol for the current context after calling SetContext), use the Symbol property of the Bars Object.

Account
BrokerTag

Wealth-Lab 7: Transaction
Account Property
string Account
Returns an Account string, which contains the account of generated alert.

EntryDate
Wealth-Lab 7: Transaction

AlertDate Property
DateTime AlertDate

Returns an AlertDate structure, which contains the date of generated alert.

Example

using System;

using System.Collections.Generic;
using System.Text;

using System.Drawing;

using System.IO;

using WealthLab;

using WealthLab.Indicators;

namespace WealthLab.Strategies
{
public class MyStrategy : WealthScript
{
// Writes trades into CSV file
public void AlertsToFile()
{

StreamWriter atf;

string path = Path.Combine(Environment.GetFolderPath (Environment.SpecialFolder.Personal),
"Alerts (" + StrategyName + ").csv");

if(Alerts.Count > 0)
{
string s = ",";
atf = new StreamWriter(path, true);
for(int n = 0; n < Alerts.Count; n++
{
WealthLab.Alert a = Alerts[n];
atf.Write(a.Bars.Symbol + s
+ a.AlertDate.ToShortDateString() + s
+ a.AlertDate.ToShortTimeString() + s
+ a.AlertType + s
+ a.Price
+ "\r\n"); // etc.
}
atf.Close();

protected override void Execute()
{
// Alert generating code - Example
for (int bar = 3; bar < Bars.Count; bar++)
{
if (!IsLastPositionActive)
{
// Two consecutive lower closes
if((Bars.Close[bar] < Bars.Close[bar-1]) &
(Bars.Close[bar-1] < Bars.Close[bar-2]))
BuyAtStop(bar+l, Close[bar]*1.03);
}
if (IsLastPositionActive)
{
SellAtLimit (bar+l, LastPosition, Close[bar]*1.10);

}
AlertsToFile();

TransactionType
Wealth-Lab 7: Transaction

AlertType Property
TradeType AlertType
Returns a TradeType enumerated list, which contains the type of generated alert. Possible values are:

Buy
Cover
Sell
Short

Example

protected override void Execute () {
// Alert generating code
for (int bar = 3; bar < Bars.Count; bar++)

{
if (IsLastPositionActive)
SellAtLimit (bar+l, LastPosition, Close[bar]*1.01);
else
BuyAtLimit (bar+l, Close[bar]*0.97);

// Show the alert type
if(Alerts.Count > 0)

{
for(int i = 0; i < Alerts.Count; i++)

{
WealthLab.Alert a = Alerts([i];
PrintDebug("Alert "™ + (i+1) + "™ type: " + a.AlertType);

Bars.Scale.Interval
Wealth-Lab 7: Transaction
BarlInterval Property
int BarInterval
Returns the intraday bar interval of the generated alert. For example, BarInterval will return 5 for 5-minute bars.
Remarks

e For non-intraday scales, BarInterval returns 0.

Example

protected override void Execute () {
// Alert generating code
for (int bar = 1; bar < Bars.Count; bar++)
{
if (!IsLastPositionActive)

{
BuyAtMarket (bar+l);

if (IsLastPositionActive)

SellAtMarket (bar+1, LastPosition);

// Returns the bar interval of an alert
if(Alerts.Count > 0)

{
for(int 1 = 0; i < Alerts.Count; i++)

{
WealthLab.Alert a = Alerts([i];
if(a.BarInterval > 0)
PrintDebug("BarInterval: " + a.BarInterval + " tick, second or minute "); else
PrintDebug("BarInterval is Daily or greater");

(See Position.BasisPrice)
Wealth-Lab 7: Position

BasisPrice Property

double BasisPrice

Returns a BasisPrice number, which contains the basis price of generated alert which is going to establish a position.

Example

protected override void Execute() {
// Alert generating code
for (int bar = 3; bar < Bars.Count; bar++)
{

if (IsLastPositionActive)

SellAtLimit (bar+l, LastPosition, Close[bar]*1.01);

else
BuyAtLimit (bar+l, Close[bar]*0.97);

// Show the basis price of an alert
if(Alerts.Count > 0)
{
for(int i = 0; i < Alerts.Count; i++
{
WealthLab.Alert a = Alerts[i];
if((a.AlertType != TradeType.Sell) &
(a.AlertType != TradeType.Cover))
PrintDebug("Alert " + (i+l) + " basis price:

OrderType
Wealth-Lab 7: Transaction

OrderType Property

OrderType OrderType

+ a.BasisPrice

Returns an OrderType enumerated list, which contains the order type of generated alert. Possible values are:

AtClose
Limit
Market
Stop

Example

protected override void Execute() {
// Alert generating code

Random rnd = new Random() ;

for (int bar = 1; bar < Bars.Count; bar++)
{
if (IsLastPositionActive)
{
// Exit trade after 3 days
if (bar+l - LastPosition.EntryBar >= 3)

SellAtMarket (bar+l, LastPosition, "Time-based");

}
else
{
// Random factor
if (rnd.Next(0,10) < 3)

BuyAtStop(bar+l, High[bar]*1.03, "Buy strength"); else
BuyAtLimit (bar+l, Low[bar]*0.97, "Buy weakness");

// Show the alert order type
if(Alerts.Count > 0)
{
for(int i = 0; i < Alerts.Count; i++
{
WealthLab.Alert a = Alerts[i];
PrintDebug("Alert " + (i+l) + " order type:

Wealth-Lab 7:

Position Property
Position Position

Contains the Position object that corresponds to a Sell or Cover alert.

PositionType
Wealth-Lab 7: Transaction

PositionType Property

PositionType PositionType

+ a.OrderType);

Returns a PositionType enumerated list, which contains the position type of generated alert. Possible values are:

e Long
e Short

Example

protected override void Execute() {
// Alert generating code

Random rnd = new Random() ;

for (int bar = 1; bar < Bars.Count; bar++)
{
if (IsLastPositionActive)
{
// Exit trade after 3 days
if (bar+l - LastPosition.EntryBar >= 3
ExitAtMarket (bar+1l, LastPosition, "3 days");
}
else
{
if (rnd.Next(0,1) == 1)
BuyAtMarket (bar+l); else
ShortAtMarket (bar+l);

// Show the alert position type
if(Alerts.Count > 0)
{

for(int i = 0; i < Alerts.Count; i++

{
WealthLab.Alert a = Alerts[i];
PrintDebug("Alert " + (i+1) + " is to go " + a.PositionType);

OrderPrice

Wealth-Lab 7: Transaction

Price Property
double Price

Returns a Price number, which contains the price of generated alert, except for Market and AtClose orders which return 0.

Example

protected override void Execute() {
// Alert generating code
for (int bar = 4; bar < Bars.Count; bar++)
{
if (!IsLastPositionActive)
{
// Three consecutive lower closes
if((Bars.Close[bar] < Bars.Close[bar-1]) &
(Bars.Close[bar-1] < Bars.Close[bar-2]) &
(Bars.Close[bar-2] < Bars.Close[bar-3]))
BuyAtStop(bar+l, Close[bar]*1.03);

if(Close[bar] > Close[bar-3])
BuyAtMarket (bar+l);
}
if (IsLastPositionActive)

{
SellAtLimit (bar+l, LastPosition, Close[bar]*1.01);

if(Alerts.Count > 0)
{
for(int i = 0; i < Alerts.Count; i++
{
WealthLab.Alert a = Alerts[i];
// Show the alert price if it's limit/stop order
if((a.OrderType != OrderType.Market) &
(a.0rderType != OrderType.AtClose))
PrintDebug("Alert "™ + (i+1) + "™ has a " + a.OrderType + " price of " + a.Price); else
PrintDebug("Alert " + (i+l) + " is a AtMarket/AtClose order; price N/A");

Bars.Scale
Wealth-Lab 7: Transaction

Scale Property
BarScale Scale
Returns a BarScale enumerated list, which contains the bar scale of generated alert. Possible values are:

Daily
Minute
Monthly
Quarterly

Second
Tick
Weekly
Yearly

Example

protected override void Execute () {
// Alert generating code
for (int bar = 3; bar < Bars.Count; bar++)
{
if (!IsLastPositionActive)
{
BuyAtMarket (bar+l);
}
if (IsLastPositionActive)

{
SellAtMarket (bar+1, LastPosition);

// Returns alert bar scale
if(Alerts.Count > 0)

{
for(int 1 = 0; i < Alerts.Count; i++)

{
WealthLab.Alert a = Alerts([i];
PrintDebug("Alert from strategy that executed on " + a.Scale + " scale ");

Quantity
Wealth-Lab 7: Transaction

Shares Property
double Shares
Returns a Shares number, which contains the number of shares for generated alert.

Remarks

e In portfolio simulation mode, all trades are pre-executed using 1 share per Position, and then position sizing is applied after the fact. So the Shares property will always return 1 while the
Strategy is executing.

Example

protected override void Execute() {
// Alert generating code
for (int bar = 3; bar < Bars.Count; bar++)
{
if (!IsLastPositionActive)
{
// Three consecutive lower closes
if((Bars.Close[bar] < Bars.Close[bar-1]) &
(Bars.Close[bar-1] < Bars.Close[bar-2]) &
(Bars.Close[bar-2] < Bars.Close[bar-3]))
BuyAtStop(bar+l, Close[bar]*1.03);
}
if (IsLastPositionActive)

{
SellAtLimit (bar+l, LastPosition, Close[bar]*1.10);

// Show the number of shares in alert
if(Alerts.Count > 0)

{
for(int i = 0; i < Alerts.Count; i++)

{
WealthLab.Alert a = Alerts[i];
PrintDebug("Alert "™ + (i+1) + " is for " + a.Shares + " shares ");

SignalName
Wealth-Lab 7: Transaction
SignalName Property

string SignalName

Returns a SignalName string, which contains the name of a signal which generated the alert.

Example

protected override void Execute () {
// Alert generating code

Random rnd = new Random() ;

for (int bar = 1; bar < Bars.Count; bar++)
{
if (IsLastPositionActive)
{
// Exit trade after 3 days
if (bar+l - LastPosition.EntryBar >= 3
SellAtMarket (bar+l, LastPosition, "Time-based");
}
else
{
// Random factor
if (rnd.Next(0,1) == 0)
BuyAtStop(bar+l, High[bar]*1.03, "Buy strength"); else
BuyAtLimit (bar+l, Low[bar]*0.97, "Buy weakness");

// Show the signal name of the alert
if(Alerts.Count > 0)
{

for(int i = 0; i < Alerts.Count; i++
{
WealthLab.Alert a = Alerts[i];
PrintDebug("Alert " + (i+l) + " was generated by: " + a.SignalName + " signal");

Symbol
Wealth-Lab 7: Transaction

Symbol Property
string Symbol

Returns a Symbol string, which contains the symbol name of generated alert.

Example

protected override void Execute() {
// Alert generating code
for (int bar = 3; bar < Bars.Count; bar++)
{
if (!IsLastPositionActive)
{
// Three consecutive lower closes
if((Bars.Close[bar] < Bars.Close[bar-1]) &
(Bars.Close[bar-1] < Bars.Close[bar-2]) &
(Bars.Close[bar-2] < Bars.Close[bar-3]))
BuyAtStop(bar+l, Close[bar]*1.03);
}
if (IsLastPositionActive)
{
SellAtLimit (bar+1l, LastPosition, Close[bar]*1.10);

// Show the symbol name for an alert
if(Alerts.Count > 0)
{
for(int i = 0; i < Alerts.Count; i++)
{
WealthLab.Alert a = Alerts[i];
PrintDebug("Alert " + (i+1) + "™ is for " + a.Symbol);

BarHistory
Wealth-Lab 7: BarHistory

Bars Object

The Bars object represents a collection of historical open, high, low, close and volume values.

Interval
e.g., bars.Scale.Interval

Wealth-Lab 7:
HistoryScale

BarlInterval Property

int BarInterval

Returns the intraday bar interval of the Bars object. For example, if the Bars object contains 5-minute bars, BarInterval will return 5.
Remarks

e For non-intraday scales, BarInterval returns 0.

Example

protected override void Execute () {
// Returns the chart bar interval
if(Bars.BarInterval > 0)
PrintDebug("BarInterval: " + Bars.BarInterval + " tick, second or minute "); else
PrintDebug("BarInterval is Daily or greater");

Cache
Wealth-Lab 7: BarHistory

Cache Property
Dictionary<string, DataSeries> Cache

Each Bars object maintains an internal cache that stores the indicators (which are DataSeries objects) created based on itself, or its open, high, low, close, or volume. The Cache property provides
access to these indicators. The Cache is a name=DataSeries Dictionary, and the DataSeries are stored using their Description as the Dictionary key. You will likely never need to use the Cache in
Strategy code, but it can be useful when building custom Performance Visualizers, because it provides access to all of the indicators created by the Strategy.

Remarks

e When an indicator is created using its Series method, Wealth-Lab first looks for the indicator in the Cache and returns it if found. This prevents the same indicators from being created and
calculated multiple times, increasing overall efficiency.

e You can explicitly clear the cache by calling Cache.Clear of the Bars object. Calling Bars.Cache.Clear at the end of the Strategy can help free resources for Strategies that process large
amounts of data, especially intraday.

Example

protected override void Execute () { // Creating a SMA the regular way:
DataSeries sma = SMA.Series(Close, 20);

// Creating a proxy data series:
DataSeries sma_test = new DataSeries(Bars,"test");

// Find the 20-period SMA in the Bars.Cache property by its Description...
if (Bars.Cache.ContainsKey ("SMA (Close,20)"))

//... and assign the result to the proxy series:

sma_test = (DataSeries)Bars.Cache["SMA (Close,20)"];

// Test by plotting the proxy series
ChartPane test = CreatePane(30, false, true);
PlotSeries(test, sma_test, Color.Black, LineStyle.Solid, 1);

Close
Wealth-Lab 7: BarHistory > Members

Close Property
DataSeries Close
Returns a DataSeries object that represents the closing prices of the Bars object. Access individual closing prices via the square bracket syntax:

//Access closing price of the last bar
double lastClose = Bars.Close[Bars.Count - 1];

Remarks

o See the DataSeries object reference for a listing of available properties and methods on the DataSeries object.

Example

protected override void Execute() {
//Access closing price of the last bar
double lastClose = Bars.Close[Bars.Count-1];
// The string is output with 2 digits
DrawLabel (PricePane, "Last close: " + String.Format("{0:f}", lastClose), Color.Black);

IndexOf
Wealth-Lab 7: BarHistory > Members

ConvertDateToBar
int ConvertDateToBar(DateTime date, bool exactMatch);

Returns the bar number that matches the DateTime provided in the date parameter. If exactMatch is true, the precise DateTime value must be located in the Bars object. Otherwise, the first bar
whose DateTime is greater than or equal to the specified date is returned.

Remarks

e (Doesn't affect WealthScript Strategy coding). In development of PosSizers and Performance Visualizers, accessing an EquityCurve or CashCurve value in multi-symbol portfolio
simulations may produce unexpected results because the different historical DataSets aren't synchronized when backtesting. Solution: in a multi-symbol backtest, it's advised to use the
ConvertDateToBar method of the EquityCurve or CashCurve DataSeries to get a correct bar. For example, here's how to determine the equity curve value at the beginning of a month using
ConvertDateToBar:

double MonthStartEquity = EquityCurve[0];

DateTime b = bars.Date[bar];

DateTime tmp = new DateTime(b.Year, b.Month, 1);

MonthStartEquity = EquityCurve[EquityCurve.ConvertDateToBar(tmp, false)];

Example

using System;

using System.Collections.Generic;
using System.Text;

using System.Drawing;

using System.Threading;

using System.Globalization;
using WealthLab;

namespace WealthLab.Strategies
{

// Print how much days since year began

public class MyStrategy : WealthScript

{
public int HowMuchDaysToBar (int bar, int year
{

CultureInfo en = new CulturelInfo ("en-US");

Thread.CurrentThread.CurrentCulture = en;
String format = "yyyyMMdd";
DateTime dtParsed = DateTime.ParseExact(Convert.ToString(year * 10000 + 101), format, en.DateTimeFormat);

return bar - Bars.ConvertDateToBar (dtParsed, false) + 1;

protected override void Execute()
{
int year = 2007;
DrawLabel (PricePane, HowMuchDaysToBar (Bars.Count-1, year) + " bars since year " + year + " started");

Count
Wealth-Lab 7: BarHistory > Members

Count Property
int Count

Returns the number of bars that are contained in the Bars object. The Bars object's Date, Open, High, Low, Close, Volume, and any "Named DataSeries" it contains, will always have the same number
of values as the Bar's Count.

Example

protected override void Execute () {
// Typical trading system main loop relies on Bars.Count property
for (int bar = 20; bar < Bars.Count; bar++)
{
/1
}

Scale
Wealth-Lab 7: BarHistory > Members
DataScale Property

BarDataScale DataScale

Returns a BarDataScale struct, which contains the Bars object's Scale and BarInterval in one structure.

Example

protected override void Execute() {
// Returns the chart bar interval and data scale
BarDataScale ds = Bars.DataScale;
if(ds.BarInterval == 0)
PrintDebug(ds.Scale); else
PrintDebug(ds.BarInterval + "-" + ds.Scale);

DateTimes
Wealth-Lab 7: BarHistory > Members

Date Property
IList<DateTime> Date
Returns a list of DateTime values that represents the historical date/times of the Bars object. Access individual date values via the square bracket syntax:

//Access the last date being charted
DateTime lastDate = Bars.Date[Bars.Count - 1];

Example

protected override void Execute () {
//Access the last date being charted
DateTime lastDate = Bars.Date[Bars.Count - 1];
DrawLabel (PricePane, "Last trading date: "™ + String.Format("{0:d}", lastDate), Color.Black);

NamedSeries(BarHistory bars, string
seriesName)

Wealth-Lab 7: Indicators

FindNamedSeries
DataSeries FindNamedSeries(string name);

Locates a "Named DataSeries" that exists within the Bars object. Named DataSeries can be registered with a Bars object by specific Data Providers. A common example of a possible Named
DataSeries is open interest for futures data. Another example are additional data fields that are imported in ASCII files.

Remarks

o If the specified Named DataSeries was not found, FindNamedSeries returns null.
o Workaround: Use GetExternalSymbol overload that accepts dataSetName as shown here. As an alternative, use GetAllDataForSymbol (example).

Example

protected override void Execute () {
DataSeries MySeries;
MySeries = Bars.FindNamedSeries("SeriesName");

Wealth-Lab 7:

FirstActualBar Property
int FirstActualBar

Returns an integer number of the bar that represents the first "real" bar of the secondary series. You can use this value to make sure that you don't enter trades on the symbol before its actual history
began.

This function is useful in scripts that loop through and execute trades on all of the symbols in a DataSet. In these cases, Wealth-Lab's synchronization feature will transform secondary data series so
that they synchronize with the Primary series, the one clicked to run the script. If a secondary data series has a shorter history than the Primary series, data bars are appended to the beginning of the
secondary series so that it's BarCount equals that of the Primary series.

Example

using System;

using System.Collections;
using System.Text;

using WealthLab;

namespace WealthLab.Strategies
{
public class MyStrategy : WealthScript
{
protected override void Execute()
{
const char tab = '\u0009';
SortedList list = new SortedList(DataSetSymbols.Count);

for (int ds = 0; ds < DataSetSymbols.Count; ds++)
{
SetContext (DataSetSymbols[ds], true);
list.Add(ds, Bars.FirstActualBar);
RestoreContext () ;

foreach(DictionaryEntry i in list)
PrintDebug("First bar of " + DataSetSymbols[(int)i.Key] + tab + ": -- #" + i.Value);

Wealth-Lab 7:

FormatValue

https://www.wealth-lab.com/Forum/Posts/34053
http://www2.wealth-lab.com/WL5WIKI/GetAllDataForSymbol.ashx
https://www.wealth-lab.com/Forum/Posts/38808

string FormatValue(double value);

Formats the specified value into a string, using the current number of Decimals.

Example

protected override void Execute () {
// Output closing value to the chart
DrawLabel (PricePane, Bars.FormatValue (Bars.Close[Bars.Count-1]), Color.Red);

Wealth-Lab 7:

HasNamedDataSeries Property
bool HasNamedDataSeries

The HasNamedDataSeries property returns true if any "Named DataSeries" have been registered in the Bars object.

Example

protected override void Execute () {

{

if (Bars.HasNamedDataSeries)
{
PrintDebug(Bars.Symbol + " contains " +
Bars.NamedSeries.Count + " named series");

}
else
PrintDebug(Bars.Symbol + " does not contain named series");

High
Wealth-Lab 7: BarHistory > Members
High Property
DataSeries High
Returns a DataSeries object that represents the high prices of the Bars object. Access individual high prices via the square bracket syntax:

//Access high price of the last bar
double lastHigh = Bars.High[Bars.Count - 1];

Remarks

e See the DataSeries object reference for a listing of available properties and methods on the DataSeries object.

Example

protected override void Execute () {
// Print high price of the last bar
double high = Bars.High[Bars.Count-1];
DrawLabel (PricePane, "High: " + String.Format("{0:f}", high), Color.Black);

IntradayBarNumber
Wealth-Lab 7: BarHistory > Members

IntradayBarNumber
int IntradayBarNumber(int bar)

Returns the intraday bar number of the day for intraday data. If the Bars object contains non-intraday data, IntradayBarNumber always returns -1. The first bar of a particular date returns 0, the
next bar returns 1, and so on.

Example

protected override void Execute () {
// Check for intraday data
if (Bars.IsIntraday)
{
// Color the middle of the trading day

// First determine how many bars there are in one day
int MaxBars = 0;
double pct;

for (int bar = Bars.Count-1; bar > -1; bar--)
if (Bars.IntradayBarNumber(bar) == 0)

MaxBars = Bars.IntradayBarNumber (bar-1);
break;

}

if (MaxBars == 0)
return;

// Now color the bars 40 - 60% within the day's range
for (int bar = 0; bar < Bars.Count; bar++)

pct = (float) Bars.IntradayBarNumber (bar) / MaxBars;
if ((pct >= 0.4) & (pct <= 0.6))
SetBarColor (bar, Color.Olive);

IsIntraday
e.g. bars.Scale.lsIntraday

Wealth-Lab 7:
HistoryScale

IsIntraday Property
bool IsIntraday

Returns whether the Bars object contains intraday data.

Example

protected override void Execute () {
if (Bars.IsIntraday != true)
System.Windows.Forms.MessageBox.Show("Not an intraday chart ");
else
System.Windows.Forms.MessageBox.Show("The intraday bar interval is " + Bars.BarInterval);

IsLastBarOfDay
Wealth-Lab 7: BarHistory > Members

IsLastBarOfDay

bool IsLastBarOfDay(int bar)

Returns true if this is the last bar of a particular day for intraday data. If the Bars object contains non-intraday data, IsLastBarOfDay always returns false. If bar equals the last bar of data in the
chart, IsLastBarOfDay finds the previous bar that was the last bar of the day, and compares the time values to determine if the bar is in fact the last bar of the current day.

Example

protected override void Execute() {
// Daytrading SMA crossover script (backtesting only)
// that closes all positions at the end of the day.

DataSeries hMAFast = SMA.Series(Close, 10);

DataSeries hMASlow = SMA.Series(Close, 30);

PlotSeries(PricePane, hMAFast, Color.Green, WealthLab.LineStyle.Solid, 1);
PlotSeries(PricePane, hMASlow, Color.Red, WealthLab.LineStyle.Solid, 1);

for (int bar = hMASlow.FirstValidValue; bar < Bars.Count; bar++)
{
if (!IsLastPositionActive)
{
if (Bars.IsLastBarOfDay(bar) == false)
if (CrossOver(bar, hMAFast, hMASlow))
BuyAtMarket (bar+l, "XOver");
}

else
{
Position p = LastPosition;
if (Bars.IsLastBarOfDay(bar) == true
SellAtClose(bar, p, "EOD");
else
{
// normal intraday exit logic
if (CrossUnder(bar, hMAFast, hMASlow))
SellAtMarket (bar+l, p, "XUnder");
}
}
}
}
Wealth-Lab 7:
IsSynthetic

bool IsSynthetic(int bar);

Allows you to determine if individual bars in the Bars object are "synthetic". Synthetic bars are bars that are created as a result of the AddCalendarDays WealthScript method.

Remarks

o Known issue: Bars.IsSynthetic wrongly marks the first trading bar after a series of synthetic bars added by AddCalendarDays. It does not work as documented, i.e. synthetic bars are not
marked.

Example

protected override void Execute () {
// Highlight added bars

if(Bars.Scale == 0)
{
int added = AddCalendarDays (true);
DrawLabel (PricePane, "Interpolated bars: "+ added.ToString(), Color.YellowGreen);

for (int bar = 0; bar < Bars.Count; bar++)
{
if (Bars.IsSynthetic(bar))
SetBarColor (bar, Color.YellowGreen);
}
} else
System.Windows.Forms.MessageBox.Show("Data must be Daily");

Wealth-Lab 7:

LoadFromFile

void LoadFromFile(string fileName)

void LoadFromFile(string fileName, int maxBars)

void LoadFromFile(string fileName, System.DateTime startDate, System.DateTime endDate)

void LoadFromFile(string fileName, System.DateTime startDate, System.DateTime endDate, int maxBars)

Loads the Bars object from an existing file on disk. The binary file can be created by any Wealth-Lab data provider, or manually in Strategy code (see SaveToFile).

Optionally, it's possible to load a specific amount of most-recent bars no greater than the maxBars value (see example below). In addition, you can limit the time interval using the startDate and
endDate parameters.

Example

using System;

using System.Collections.Generic;
using System.Text;

using System.Drawing;

using WealthLab;

namespace WealthLab.Strategies

{

/* Load bars from file */

public class TestLoadBars : WealthScript
{

protected override void Execute()

{

Bars bars = new Bars("NewBars",BarScale.Daily,0);

/* Pass "true" to GetDataPath() if using Wealth-Lab Pro,
for Wealth-Lab Developer make it "false"

Note: The data should NOT be relocated, otherwise you would have
to correct the path inside the GetDataPath () function body */

string sym = GetDataPath(false) + @"Daily\A\A.WL";

// Load just 100 recent bars of the stock called "
bars.LoadFromFile(sym, 100);

// Plot the data

bars = Synchronize (bars);

ChartPane newBars = CreatePane(50, true, true);
PlotSymbol (newBars, bars, Color.Blue, Color.Red);

// Get the path to directory where data is stored
public static string GetDataPath(bool pro)
{
string path = pro ?
@"\Fidelity Investments\WealthLabPro\1.0.0.0\Data\FidelityStaticProvider\"
@"\Fidelity Investments\WealthLabDev\1.0.0.0\Data\YahooStaticProvider\";
return
Environment.GetFolderPath (Environment.SpecialFolder.ApplicationData) + path;

Low
Wealth-Lab 7: BarHistory > Members

Low Property
DataSeries Low
Returns a DataSeries object that represents the low prices of the Bars object. Access individual low prices via the square bracket syntax:

//Access low price of the last bar
double lastLow = Bars.Low[Bars.Count - 1];

Remarks

e See the DataSeries object reference for a listing of available properties and methods on the DataSeries object.

Example

protected override void Execute() {
// Print low price of the last bar
double low = Bars.Low[Bars.Count-1];
DrawLabel (PricePane, "Low: " + String.Format("{0:f}", low), Color.Black);

Dictionary< string, TimeSeries > NamedSeries
Wealth-Lab 7: BarHistory > Members

NamedSeries Property
ICollection<DataSeries> NamedSeries

The NamedSeries property returns a list of all of the "Named DataSeries" that have been registered in the Bars object. Named DataSeries can be registered with a Bars object by specific Data
Providers. A common example of a possible Named DataSeries is open interest for futures data. Another example are additional data fields that are imported in ASCII files.

Example
protected override void Execute () {

// Run this on a DataSet with defined Custom series

// For example:

//DATE; TIME; VOLUME ; OPEN; CLOSE ; MIN; MAX
//06/08/2007;22:36:41;0;21.83;21.83;21.83;21.83
//06/08/2007;22:36:51;0;21.83;21.83;21.83;21.83
//06/08/2007;22:37:01;0;21.83;21.83;21.83;21.83
// Will output 'Min' and 'Max'

if (Bars.NamedSeries.Count > 0)

{
foreach(DataSeries d in Bars.NamedSeries)
PrintDebug(d.Description);

Open
Wealth-Lab 7: BarHistory > Members

Open Property
DataSeries Open
Returns a DataSeries object that represents the open prices of the Bars object. Access individual open prices via the square bracket syntax:

//Access open price of the last bar
double lastOpen = Bars.Open[Bars.Count - 1];

Remarks

o See the DataSeries object reference for a listing of available properties and methods on the DataSeries object.

Example

protected override void Execute () {
// Print open price of the last bar
double open = Bars.Open[Bars.Count-1];
DrawLabel (PricePane, "Open price: " + String.Format("{0:f}", open), Color.Black);

Wealth-Lab 7:

SaveToFile

void SaveToFile(string fileName)

Saves the Bars object to a file on disk. The binary file can be recognized by Wealth-Lab natively (see LoadFromFile).

Example

protected override void Execute () {
/* Create a Heikin-Ashi chart and save the resulting bars to file */

HideVolume () ;
Bars bars = new Bars(Bars.Symbol.ToString() + " (Heikin-Ashi)", BarScale.Daily, 0);

// Create Heikin-Ashi series

DataSeries HO = Open + 0;

DataSeries HH = High + 0;

DataSeries HL = Low + 0;

DataSeries HC = (Open + High + Low + Close) / 4;

// Build the Bars object
for (int bar = 1; bar < Bars.Count; bar++)
{

double ol = HO[bar-1];

double cl = HC[bar-1];

HO[bar] = (ol + cl1) / 2;

HH[bar] = Math.Max(HO[bar], High[bar]);
HL[bar] = Math.Min(HO[bar], Low[bar]);

bars.Add (Bars.Date[bar], HO[bar], HH[bar], HL[bar], HC[bar], Bars.Volume [bar]);

// Save the virtual Heikin-Ashi bars to disk
string file = @"C:\Heikin-Ashi.WL";
bars.SaveToFile(file);

// Verify by loading from disk and plotting

Bars haBars = new Bars("Saved Heikin-Ashi Bars",BarScale.Daily,0);
haBars.LoadFromFile(file);

haBars = Synchronize (haBars);

ChartPane haPane = CreatePane (50, false, true);

PlotSymbol (haPane, haBars, Color.DodgerBlue, Color.Red);

Scale
Wealth-Lab 7: BarHistory > Members

Scale Property
BarScale Scale
Returns the Scale of the data contained in the Bars object. Possible Scale values are:

Daily
Weekly
Monthly
Minute
Second
Tick
Quarterly
Yearly

Example

protected override void Execute() {
System.Windows.Forms.MessageBox.Show("Data scale is " + Bars.Scale);

SecurityName
Wealth-Lab 7: BarHistory > Members

SecurityName Property
string SecurityName

Returns the security name of the symbol contained in the Bars object. This will be the company name for stocks, and the name of the commodity or future for futures symbols.

Example

protected override void Execute () {
System.Windows.Forms.MessageBox.Show("We're now viewing " + Bars.SecurityName + " chart");

Symbol
Wealth-Lab 7: BarHistory > Members

Symbol Property
string Symbol

Returns the symbol for the data that was loaded into the Bars object.

Example

protected override void Execute() {
// Show the closing price with the symbol in a chart label }
double x = Close[Bars.Count-1];
DrawLabel (PricePane, "Closing price for " + Bars.Symbol + " is " + x, Color.DarkSlateGray):;

Symbolinfo
Wealth-Lab 7: Symbolinfo

Symbollnfo Property

The Symbollnfo object represents a number of symbol's properties: Decimals, Margin, Point Value, Security Type and Tick.

Example

protected override void Execute () {
SymbolInfo si = Bars.SymbolInfo;
PrintDebug (Bars.Symbol);

PrintDebug("Symbol= " + si.Symbol);
PrintDebug("Point Value = " + si.PointValue);
PrintDebug("Tick = " + si.Tick);

PrintDebug("Margin = " + si.Margin);

PrintDebug("Decimals = " + si.Decimals);

PrintDebug("");

UserData
Wealth-Lab 7: BarHistory > Members

Tag Property
object Tag

The Tag property allows you to store any object with a Bars object.

Example

protected override void Execute(){//
//"currentPos" is null when sizing trading signals on bar+l (Alert)

//This example illustrates how to send a double value to a PosSizer

//from a Strategy to size an Alert.
//

for (int bar = 5; bar < Bars.Count; bar++)
{
if(IsLastPositionActive
{
SellAtMarket (bar+l, LastPosition);
}
else
{
if(Close[bar] <= Lowest.Series(Close, 5)[bar-1])
{
double size = 100;

in PosSizers.

if (BuyAtMarket (bar+l) == null && (bar == Bars.Count-1))

{

// Store some double value in the current Bars.Tag property

Bars.Tag = size;

// Next, in your PosSizer's SizePosition method call:

// double size = (double)bars.Tag;

Volume
Wealth-Lab 7: BarHistory

Volume Property

DataSeries Volume

Returns a DataSeries object that represents the volume of the Bars object. Access individual bar volumes via the square bracket syntax:

//Access volume of the first bar
double firstVolume = Bars.Volume[0];

Remarks

e See the DataSeries object reference for a listing of available properties and methods on the DataSeries object.

Example

protected override void Execute () {
//Access volume of the last bar
double turnover = Bars.Close[Bars.Count-1] * Bars.Volume [Bars.Count-1];
// Print stock turnover
DrawlLabel (PricePane, "Turnover: " + String.Format("${0:0,0}", turnover),

Color.Black

Wealth-Lab 7:

ChartPane Object
The ChartPane object represents one of the panes of the current chart.

Wealth-Lab 7:

ConvertValueToY
int ConvertValueToY (double value);

Converts the specified numeric value to the Y-pixel coordinate on the chart pane. This method is most valuable in custom Chart Style programming, but can also come in handy when developing
custom Drawing Objects or using WealthScript's PaintHook functionality.

Wealth-Lab 7:

Decimals Property
int Decimals
Specifies the number of decimals places that will be used to format values in the chart pane's margins.
Remarks
e Known issue: ChartPane.Decimals doesn't work for all panes but the VolumePane

Wealth-Lab 7:

DisplayGrid Property
bool DisplayGrid
Determines whether the horizontal gridlines should be visible on this chart pane.

Wealth-Lab 7:

FormatChartValue

string FormatChartValue(double value);

Formats the specified numeric value to an abbreviated string, based on its value, and also taking into account the Decimals property.
Examples:

123.45 will format as 123.45
12,345 will format as 12.34K
1,234,567 will format as 1.23M

Wealth-Lab 7:

GetBackgroundColor
Color GetBackgroundColor(int bar);
Returns the background color at the specified bar in the pane.

Wealth-Lab 7:

Height Property
int Height

The current height of the pane, in pixels. This property has limited value at the time a Strategy executes, but can prove valuable when building custom ChartStyles, or using the PaintHook
functionality of WealthScript.

Wealth-Lab 7:

IsPricePane Property
bool IsPricePane

Returns true if this chart pane is the one that the main price bars are being plotted on. This property has limited value in Strategy code, but can prove useful in programming custom Drawing Objects.

Example

protected override void Execute() {

if (PricePane.IsPricePane)
System.Windows.Forms.MessageBox.Show("Operating in Strategy window"); else
System.Windows.Forms.MessageBox.Show("Running in Strategy Monitor");

Wealth-Lab 7:

LogScale Property
bool LogScale
Controls whether the chart pane will be plotted in semi-log scale.

A semi-log scale gives equal weight to percentage changes, rather then absolute value changes. For example, the distance from 1 to 10 will be the same size on the chart as the distance from 10 to 100.
It's called "semi-log" because only the y-axis uses the log scale, whereas the x-axis [typically] remains evenly-spaced.

Example

protected override void Execute () {

if((PricePane != null) & (VolumePane != null))
{
PricePane.LogScale = true;
VolumePane.LogScale = true;
DrawLabel (PricePane, "Price Pane is in Semi-Log Scale? " + PricePane.LogScale);
DrawLabel (PricePane, "Volume Pane is in Semi-Log Scale? " + VolumePane.LogScale);
}
}
SetBackgroundColor
Wealth-Lab 7: UserStrategyBase > Chart
Rendering
SetBackgroundColor

void SetBackgroundColor(int bar, Color color);
Sets the background color at the specified bar in the pane to the specified color.

Wealth-Lab 7:

Top Property
int Top

Returns the location of the top of the pane from the top of the chart, in pixels. This property has no real value in Strategy code, but can be useful in custom Drawing Object development, or
implementing PaintHooks in the WealthScript.

Wealth-Lab 7:

Common Signals

The Common Signal category contains methods that are commonly used to produce trading signals.

CrossesOver(double value, int idx)
CrossesOver(TimeSeries ts, int
idx)

Wealth-Lab 7: IndicatorBase

CrossOver

bool CrossOver(int bar, DataSeries ds1, DataSeries ds2);
bool CrossOver(int bar, DataSeries ds1, double value);

Returns true if the specified DataSeries (ds1) crosses over either another DataSeries (ds2), or a specific value, on the specified bar. Specifically, CrossOver returns true if the current value is above
the target value at the specified bar, and the previous value was less than or equal to the target value at the previous bar.

Example

protected override void Execute () {
DataSeries wmal = WMA.Series(Close, 30);
DataSeries wma2 = WMA.Series(Close, 60);
PlotSeries(PricePane, wmal, Color.LightCoral, WealthLab.LineStyle.Solid, 1);
PlotSeries(PricePane, wma2, Color.LightBlue, WealthLab.LineStyle.Solid, 1);

// A simple Weighted Moving Average Crossover System

for (int bar = wma2.FirstValidValue; bar < Bars.Count; bar++)
{
if (IsLastPositionActive)
{
Position p = LastPosition;
SellAtStop(bar+l, p, p.EntryPrice * 0.96, "4% Stop");
SellAtLimit (bar+l, p, p.EntryPrice * 1.06, "6% Target");
}
else
{
if (CrossOver(bar, wmal, wma2)
BuyAtMarket (bar+l);

CrossesUnder(double value, int idx)
CrossesUnder(TimeSeries ts, int
idx)

Wealth-Lab 7: IndicatorBase

CrossUnder

bool CrossUnder(int bar, DataSeries ds1, DataSeries ds2);
bool CrossUnder(int bar, DataSeries ds1, double value);

Returns true if the specified DataSeries (ds1) crosses under either another DataSeries (ds2), or a specific value, on the specified bar. Specifically, CorssUnder returns true if the current value is below
the target value at the specified bar, and the previous value was greater than or equal to the target value at the previous bar.

Example

protected override void Execute () {
ChartPane StochPane = CreatePane(50, true, true);
DataSeries D = StochD.Series(Bars, 3, 20);
DataSeries Signal = EMA.Series(D, 9, WealthLab.Indicators.EMACalculation.Modern);
PlotSeries(StochPane, D, Color.Blue, WealthLab.LineStyle.Solid, 1);
PlotSeries(StochPane, Signal, Color.Gray, WealthLab.LineStyle.Solid, 1);

for (int bar = 30; bar < Bars.Count; bar++)
{
// It closes all positions when Stochastic
// crosses below the signal line from above 80.

if ((ActivePositions.Count > 0) &&
CrossUnder (bar, D, Signal) && (D[bar-1] > 80))

// Let's work directly with the list of active positions, introduced in WL5
for(int p = ActivePositions.Count - 1; p > -1 ; p--)
SellAtMarket (bar+l, ActivePositions[p]):

// This system opens a new position whenever Stochastic
// crosses above its signal line from below 20.
if (CrossOver(bar, D, Signal))

if (D[bar-1] < 20)
BuyAtMarket (bar+1l, "Stoch");

TurnsDown(int idx)

Wealth-Lab 7:
IndicatorBase
TurnDown

bool TurnDown(int bar, DataSeries series);

Returns true if the specified DataSeries has "turned down" as of the specified bar. The series has turned down if the value at bar is less than the value at bar - 1, and the next most recent change in
value in the series was an increase.

Example

protected override void Execute () {
// Buy when Williams %R turns down and is above 80
DataSeries PctR = WilliamsR.Series(Bars, 30);
ChartPane PctRPane = CreatePane(25, true, true);
PlotSeriesOscillator (PctRPane, PctR, 90, 10, Color.LightCoral, Color.LightBlue, Color.Gray, WealthLab.LineStyle.Solid, 1);

// Time-based exit
int days = 20;

// Start trading loop with the first "valid" value of %R
for (int bar = PctR.FirstValidValue; bar < Bars.Count; bar++)
{
if (IsLastPositionActive)
{
if (bar+l - LastPosition.EntryBar >= days)
SellAtClose (bar, LastPosition);
}
else
{
// Color turndowns
if (TurnDown (bar, PctR))
{
SetSeriesBarColor (bar, PctR, Color.Red);
if (PctR[bar] > 80)
{
BuyAtMarket (bar+l, "WR");

TurnsUp(int idx)
Wealth-Lab 7:
IndicatorBase
TurnUp
bool TurnUp(int bar, DataSeries series);

Returns true if the specified DataSeries has "turned up" as of the specified bar. The series has turned up if the value at bar is greater than the value at bar - 1, and the next most recent change in value
in the series was a decrease.

Example

protected override void Execute () {
// Enter the market when the slow stochastic turns up from below 15
DataSeries stoch = StochD.Series(Bars, 5, 60);
ChartPane StochPane = CreatePane(30, true, true);
PlotSeries(StochPane, stoch, Color.Blue, WealthLab.LineStyle.Solid, 2);

// Start trading loop with the first "valid" value of StochD
for (int bar = stoch.FirstValidValue; bar < Bars.Count; bar++)
{
if (IsLastPositionActive)
{
if(CrossOver(bar, stoch, 80))
SellAtMarket (bar+l, LastPosition, "StochD Crosses 80");
}
else
{
if (stoch[bar-1] < 15)
{
// Color TurnUps
if (TurnUp(bar, stoch))
{
SetSeriesBarColor(bar, stoch, Color.Red);
BuyAtMarket (bar+l, "StochasticD Turns Up");
}

Chart Rendering
Wealth-Lab 7: UserStrategyBase > Chart
Rendering

Cosmetic Chart

The Cosmetic Chart category consists of methods you can use to plot shapes, images and various other annotations on the chart. It also contains methods to control the colors of the bars and chart background.

DrawBarAnnotation
Wealth-Lab 7: UserStrategyBase > Chart
Rendering

AnnotateBar

void AnnotateBar(string text, int bar, bool aboveBar, Color color, Color backgroundColor, Font font);
void AnnotateBar(string text, int bar, bool aboveBar, Color color, Color backgroundColor);
void AnnotateBar(string text, int bar, bool aboveBar, Color color);

Annotates the specified bar with the string passed in the text parameter, using the specified color for the font. Use the aboveBar parameter to control if the text is displayed above or below the bar. Using the version that accepts a
backgroundColor parameter causes the text to be displayed over a filled background. Calling AnnotateBar multiple times causes the annotations to be stacked one on top of another either above or below the bar.

Use the version of the method that accept a Font parameter to draw the text using a custom font. If you use this version and do not want a colored background, specify Color.Empty for the backgroundColor parameter.

Example

protected override void Execute() {
Font font = new Font("Arial", 12, FontStyle.Bold);
// Demonstrates operation overload
for (int bar = 200; bar < Bars.Count; bar++)
{
// Annotate a bar if it's a 200 day closing high

if (Bars.Close[bar] Highest.Series (Close, 200) [bar])
AnnotateBar ("High", bar, true, Color.DarkGreen);

// Annotate a bar if it's a 200 day closing low

if (Bars.Close[bar] == Lowest.Series(Close, 200) [bar])

AnnotateBar ("Low", bar, false, Color.DarkRed, Color.White);
// Bnnotate the last bar
if (bar == Bars.Count-1)
AnnotateBar ("Last", bar-3, false, Color.DarkRed, Color.White, font);

Wealth-Lab 7:

AnnotateChart

void AnnotateChart(ChartPane pane, string text, int bar, double value, Color color, Color backgroundColor, Font font, HorizontalAlignment alignment);
void AnnotateChart(ChartPane pane, string text, int bar, double value, Color color, Color backgroundColor, Font font);

void AnnotateChart(ChartPane pane, string text, int bar, double value, Color color, Color backgroundColor);

void AnnotateChart(ChartPane pane, string text, int bar, double value, Color color);

Annotates the chart with the specified text using the specified color at a location provided by the bar and value parameters. The pane parameter determines which chart pane is annotated. If you call the version of AnnotateChart that
accepts a backgroundColor parameter, the text will be displayed over a filled background.

Use the version of the method that accept a Font parameter to draw the text using a custom font. If you use this version and do not want a colored background, specify Color.Empty for the backgroundColor parameter.
Use the first overloaded version of the method, with the alignment parameter, to control the alignment of the text, relative to the bar. Possible values are Left, Center or Right.
Remarks

o To annotate the price pane, use PricePane for the pane parameter.
e To annotate the volume pane, use VolumePane for the pane parameter.

Example

protected override void Execute() {
// Define new font style
Font font = new Font("Arial", 7, FontStyle.Regular);
DataSeries smaVolume = SMA.Series(Volume, 50);
PlotSeries (VolumePane, smaVolume, Color.LightSalmon, WealthLab.LineStyle.Solid, 2);
// Demonstrates operator overload
for (int bar = 50; bar < Bars.Count; bar++)
{
// Annotate the last bar if it demonstrates unusual volatility
if (bar == Bars.Count-1)

{

if (ATR.Series(Bars, 1)[bar] >= 2 * ATR.Series(Bars, 14) [bar])
AnnotateChart (PricePane, "Volatile!", bar-5, High[bar], Color.Green, Color.White, font, System.Windows.Forms.HorizontalAlignment.Left);
if (Volume[bar] >= 1.5 * smaVolume[bar])
AnnotateChart (VolumePane, "Volume is High", bar-10, Volume[bar], Color.Green, Color.White, font, System.Windows.Forms.HorizontalAlignment.Left);

Wealth-Lab 7:

ChartStyle Property
ChartStyle ChartStyle

Returns the instance of the ChartStyle object that is currently being used to render the chart. This is an object that derives from the base ChartStyle class, and is responsible for rendering the actual bars of the chart. Some ChartStyle objects
contain additional data structures and information that can be used in your Strategy. Consult the specific ChartStyle documentation for any additional value that might be obtained.

Remarks

e To access any methods or properties that are specific to a ChartStyle derived object, you will need to cast the ChartStyle object returned here to the specific type you are expecting. For this to work, you will need to ensure that the
desired chart style is actually selected in the toolbar.
o If the Strategy is run in a context where there is no chart (such as the Strategy Monitor or a Multi-Symbol Backtest), this property returns null.

Example

using System;

using System.Collections.Generic;
using System.Text;

using System.Drawing;

using WealthLab;

using WealthLab.Indicators;

namespace WealthLab.Strategies
{

public class MyStrategy : WealthScript

{
bool IsStrategyMonitor ()

{
return ChartStyle == null;

protected override void Execute()
{
if (!IsStrategyMonitor())
System.Windows.Forms.MessageBox.Show("Operating in Strategy window"); else
System.Windows.Forms.MessageBox.Show("Running in Strategy Monitor");

See paneTag parameter in Plot functions
Wealth-Lab 7: UserStrategyBase > Chart
Rendering
CreatePane
ChartPane CreatePane(int height, bool abovePricePane, bool displayGrid);

Creates a new pane on the chart and returns the new pane as a ChartPane object. The height parameter controls the height of the pane, which fluctuates as the chart is resized. A value of 40 for height creates a pane with a standard height.
You can create panes either above or below the price pane through the abovePricePane parameter. The displayGrid parameter controls whether the pane will display grid lines. You can plot indicators in the pane using PlotSeries and the
various other plotting methods.

Remarks

o See the ChartPane object reference for more information about the properties and methods of ChartPanes.

Example

protected override void Execute() {
//Create and plot Williams %R indicator
WilliamsR wr = WilliamsR.Series(Bars, 20);
ChartPane wrPane = CreatePane(40, true, true);
PlotSeriesOscillator(wrPane, wr, 90, 10, Color.LightGreen, Color.LightCoral, Color.CadetBlue, LineStyle.Solid, 1);

Wealth-Lab 7:

DrawCircle

void DrawCircle(ChartPane pane, int radius, int bar, double value, Color color, Color fillColor, LineStyle style, int width, bool behindBars);
void DrawCircle(ChartPane pane, int radius, int bar, double value, Color color, LineStyle style, int width, bool behindBars);

protected void DrawCircle(ChartPane pane, int barl, double valuel, int bar2, double value2, Color color, Color fillColor, LineStyle style, int width, bool behindBars);
protected void DrawCircle(ChartPane pane, int barl, double valuel, int bar2, double value2, Color color, LineStyle style, int width, bool behindBars);

The DrawCircle method provides two ways to draw (and optionally fill) circles on a chart, in the specified pane. Each method accepts an optional fillColor parameter, that (if specified) causes the circle to be filled with a color. The final
parameter, behindBars, determines whether the circle will be plotted behind or in front of the bars of the chart. The circle will be drawn using the specified color, style, and width.

The first method draws a circle with a radius specified in pixels, at the coordinates specified by the bar (X) and value (Y) parameters.

The second method draws a circle whose radius is a line specified by two points, barl/valuel and bar2/value2. In this way, your circles can be bound to actual bars/prices on the chart.

Remarks

o Known issue: Zooming the chart may fail if DrawCircle() is applied to the chart if the price range exceeds $2,000,000.00
e Workaround: Don't use DrawCircle() on bars where the price exceeds this figure:

for (int bar = 0; bar < Bars.Count; bar++)

{
if (Close[bar] < 2100000)
DrawCircle (PricePane, 9, bar, Close[bar]+ 0.05, Color.Empty, Color.Green, WealthLab.LineStyle.Solid, 1, true);

}

Example

protected override void Execute() {
// Operator overload
for (int bar = 200; bar < Bars.Count; bar++)
{
// Circle any 200 day High
if (High[bar] == Highest.Series(High, 200) [bar])
DrawCircle(PricePane, 4, bar, High[bar], Color.Green, Color.DarkGreen, WealthLab.LineStyle.Solid, 1, true);
// Circle any 200 day Low
if (Low[bar] == Lowest.Series(Low, 200) [bar])
DrawCircle(PricePane, bar-1, Low[bar-1], bar, Low[bar-1], Color.Red, Color.DarkRed, WealthLab.LineStyle.Solid, 1, false);

DrawEllipse
Wealth-Lab 7: UserStrategyBase > Chart

Rendering
DrawEllipse

void DrawEllipse(ChartPane pane, int barl, double valuel, int bar2, double value2, Color color, Color fillColor, LineStyle style, int width, bool behindBars);
void DrawEllipse(ChartPane pane, int barl, double valuel, int bar2, double value2, Color color, LineStyle style, int width, bool behindBars);

Plots an ellipse on the pane using the specified color, style and width. If the version using fillColor is called, also fills the ellipse using the specified fillColor. The ellipse is bound by a rectangle defined by the points barl, valuel and
bar2, value2. The behindBars parameter controls whether the ellipse is plotted behind, or in front of the bars of the chart.

Example

protected override void Execute() {
int Bar = (int)TroughBar.Value(Bars.Count-1, Low, 5, WealthLab.Indicators.PeakTroughMode.Percent);
double Price = Low[Bar];
DrawEllipse (PricePane, Bar-4, Price*1.02, Bar+4, Price*0.98, Color.Red, Color.LightCoral, WealthLab.LineStyle.Solid, 1, false);
Bar = (int)PeakBar.Value(Bars.Count-1, High, 5, WealthLab.Indicators.PeakTroughMode.Percent);
Price = High[Bar];
DrawEllipse (PricePane, Bar-4, Price*1.02, Bar+4, Price*0.98, Color.Green, Color.LightGreen, WealthLab.LineStyle.Solid, 1, true);

DrawHorzLine

Wealth-Lab 7: UserStrategyBase > Chart
Rendering

DrawHorzLine
void DrawHorzLine(ChartPane pane, double value, Color color, LineStyle style, int width);

Draws a horizontal line on a pane, and plots an accompanying label marking the value in the right margin of the chart. The line is drawn using the specified color, style and width.

Example

protected override void Execute() {
// Plot RSI and draw horizontal lines at 30/70 levels
ChartPane rsiPane = CreatePane(50, true, false);
PlotSeries(rsiPane, RSI.Series(Close,20), Color.Brown, WealthLab.LineStyle.Solid, 1);
DrawHorzLine (rsiPane, 30, Color.Green, WealthLab.LineStyle.Solid, 1);
DrawHorzLine (rsiPane, 70, Color.Red, WealthLab.LineStyle.Solid, 1);

Drawlmage
Wealth-Lab 7: UserStrategyBase > Chart
Rendering
Drawlmage
void DrawImage(ChartPane pane, Image image, int bar, double value, bool behindBars);

Draws the passed image object onto the specified pane. The image is centered on the specified bar and value in the pane. The behindBars parameter controls whether the image is rendered behind or in front of the chart bars and plotted
indicators.

Example

protected override void Execute() {
Image image = Image.FromFile ("C:\\temp\\image.jpg");
DrawImage(PricePane, image, Bars.Count-50, Close[Bars.Count-50], false);

DrawHeaderText
Wealth-Lab 7: UserStrategyBase > Chart
Rendering

DrawLabel

void DrawLabel(ChartPane pane, string text, Color color);
void DrawLabel(ChartPane pane, string text);

Draw a text label on the chart, on the specified pane. Optionally, you can provide a color for the font of the text. The label will be displayed in the upper left corner of the pane (below the security name if drawn on the price pane.) Calling
DrawLabel multiple times will cause the labels to be stacked one on top of another.

Example

protected override void Execute() {
for (int bar = 0; bar < Bars.Count; bar++)
{
// Check for negative price values

if ((Close[bar] < 0) | (Close[bar] <0) |
(Close[bar] < 0) | (Close[bar] < 0))
DrawLabel (PricePane, Bars.Date[bar].ToString());
}
}
DrawLine
Wealth-Lab 7: UserStrategyBase > Chart
Rendering
DrawLine

void DrawLine(ChartPane pane, int barl, double valuel, int bar2, double value2, Color color, LineStyle style, int width);

Draws a line on the specified pane, between the two points identified by bar1, valuel and bar2, value2. The line is drawn using the specified color, style and width.

Example

protected override void Execute () {
// Draw a line between the last 2 peaks

int Bar = Bars.Count-1;

double pl = Peak.Value(Bar, High, 4, WealthLab.Indicators.PeakTroughMode.Percent);

int pbl = (int) PeakBar.Value(Bar, High, 4, WealthLab.Indicators.PeakTroughMode.Percent);
double p2 = Peak.Value(pbl, High, 4, WealthLab.Indicators.PeakTroughMode.Percent);

int pb2 = (int) PeakBar.Value(pbl, High, 4, WealthLab.Indicators.PeakTroughMode.Percent);

DrawLine (PricePane, pbl, pl, pb2, p2, Color.Red, WealthLab.LineStyle.Dotted, 1);

DrawPolygon
DrawRectangle

Wealth-Lab 7: UserStrategyBase > Chart
Rendering
DrawPolygon

void DrawPolygon(ChartPane pane, Color color, Color fillColor, LineStyle style, int width, bool behindBars, params double[] coords);
void DrawPolygon(ChartPane pane, Color color, LineStyle style, int width, bool behindBars, params double[] coords);

The DrawPolygon allows you to draw a variety of shapes on the chart, optionally filled if you call the version that accepts a fillColor parameter. The shape will be drawn on the specified pane, using the color, style, and width that you pass
as parameters. The behindBars parameter controls whether the shape will be drawn in front of or behind the bars of the chart.

The actual shape that will be drawn is defined in the coords parameter. You should pass a series of pairs of doubles, bar/value, that define the points of the polygon. For example, to draw a triangle, you would pass a total of 6 values,
logically representing barl, valuel, bar2, value2, bar3, value3.

Example

protected override void Execute() {
// Draw a rectangle outlining recent 10% peak and trough

int Bar = Bars.Count-1;

int bl = (int)PeakBar.Value(Bar, Close, 10, WealthLab.Indicators.PeakTroughMode.Percent);
int b2 = (int)TroughBar.Value(Bar, Close, 10, WealthLab.Indicators.PeakTroughMode.Percent);
double pl = Close[bl];

double p2 = Close[b2];

double[] rectangle = { bl, pl, bl, p2, b2, p2, b2, pl }; // counter-clockwise

drawPolygon (PricePane, Color.Blue, Color.LightSteelBlue, WealthLab.LineStyle.Solid, 2, true, rectangle);

DrawText
Wealth-Lab 7: UserStrategyBase > Chart
Rendering

DrawText

void DrawText(ChartPane pane, string text, int x, int y, Color color, Color backgroundColor, Font font);
void DrawText(ChartPane pane, string text, int x, int y, Color color, Color backgroundColor);
void DrawText(ChartPane pane, string text, int X, int y, Color color);

Draws the specified text in the chart pane, at the x, y pixel coordinates. The coordinates are expressed as the number of pixels from the upper left corner of the pane. The text is drawn using the specified color. If you use the version that
accepts a backgroundColor parameter, the text is drawn over a rectangle filled with that color.

Use the version of the method that accept a Font parameter to draw the text using a custom font. If you use this version and do not want a colored background, specify Color.Empty for the backgroundColor parameter.
Remarks

e To draw text on the price pane, use PricePane for the pane parameter.
e To draw text on the volume pane, use VolumePane for the pane parameter.

Example

protected override void Execute () {
// Prints RSI value over the PricePane
DrawText (PricePane, "l4-period RSI is " + (RSI.Series(Close, 14)[Bars.Count-1]), 0, 40, Color.Black, Color.Empty);

Wealth-Lab 7:

EnableTradeNotes
void EnableTradeNotes(bool Text, bool Arrow, bool Circle);
Controls the visibility of a trade tooltip, buy/sell arrows and intrabar entry/exit points on the chart.

The Text parameter controls whether or not a trade tooltip and a line to connect a trade's entry point to its associated exit point (if applicable) are drawn on the chart. Arrow controls whether or not buy and sell arrows appear above/below the
bar where trades are opened and closed. Cirele controls whether the circles are drawn at the exact spot where trades occur on the bar.

Remarks

o Disabling arrows will also make trade notes disappear even if Text is true.

Example

protected override void Execute() {
for (int bar = 1; bar < Bars.Count; bart+)
{
if (IsLastPositionActive)
SellAtMarket (bar+l, LastPosition);
else
BuyAtMarket (bar+l);

/* Turn off those pesky notes if there
are many trades, show arrows only */

if (Positions.Count > 20)
EnableTradelNotes (false, true, false);

Wealth-Lab 7:

HidePaneLines
void HidePaneLines();

Causes the lines separating the panes in a chart to not be displayed.

Example

protected override void Execute () {
HidePaneLines () ;

Wealth-Lab 7:

HideVolume
void HideVolume();
Renders the volume pane invisible, providing more room to the Prices Pane in the chart.

Remarks

e Non-p ically (and the main chart) you can minimize and maximize panes by clicking the - and + next to the label in the pane's upper left corner. If the labels are not shown, enable them by clicking the "Show
Indicators Labels on Chart" button in the chart toolbar.

Example

protected override void Execute() {
// Some cosmeti

HideVolume () ;

HidePaneLines () ;

//Plot Microsoft data on the same pane as the symbol being charted
Bars msft = GetExternalSymbol ("MSEFT", true);

ChartPane msftPane = CreatePane(100, false, true);

PlotSymbol (msftPane, msft, Color.Silver, Color.Silver);

ExtendedBars
Wealth-Lab 7: BarHistory > Members

PadBars
void PadBars(int numberOfBars);

Pads the right of the chart with empty space. The amount of space padded is based on the number specified in the numberOfBars parameter. New "pseudo-bars" are not created, but the current bar spacing selected and the numberOfBars
determines how much empty space is padded to the right of the chart.

Example

protected override void Execute() {
PadBars(10);

Wealth-Lab 7:

PlotFundamentalltems

void PlotFundamentalltems(ChartPane pane, string symbol, string itemName, Color color, LineStyle style, int width);
void PlotFundamentalltems(ChartPane pane, string itemName, Color color, LineStyle style, int width)

Plots historical fundamental data items onto the chart, on the specified pane. The desired items to plot are specified by the itemName parameter. If the desired items are symbol-specific, then use the version of the method that accepts a
symbol parameter, and pass the stock symbol whose items you want to plot. The fundamental data is plotted in a special filled style, where the demarcation of each item is outlined in the specified color. When a new fundamental data item
occurs, it can be clearly seen because this range is outlined using the color. The interior of the plotted area is filled with semi-transparent version of the color specified. Finally, plotted ranges are outlined using the indicated width.

Example

protected override void Execute() {
ChartPane fPanel = CreatePane (

25, true, false);
ChartPane fPane2 = CreatePane(25

, true, false);
// Plot IBM dividends on the chart of another stock

if((string)Bars.Symbol != "IBM")
{
PlotFundamentalItems (fPanel, "IBM", "dividend", Color.Red, WealthLab.LineStyle.Solid, 1);
} else
Abort () ;

DataSeries divIBM = FundamentalDataSeries("IBM", "dividend");
PlotSeries(fPane2, divIBM, Color.Red, WealthLab.LineStyle.Solid, 1);

PlotTimeSeries
PlotTimeSeriesLine
Plotindicator
PlotindicatorLine

Wealth-Lab 7: UserStrategyBase > Chart
Rendering

PlotSeries

void PlotSeries(ChartPane pane, DataSeries series, Color color, LineStyle style, int width);
void PlotSeries(ChartPane pane, DataSeries series, Color color, LineStyle style, int width, string label);

Plots the specified DataSeries (series) in the specified pane of the chart. The cosmetic appearance of the plotted DataSeries is controlled by the color, style, and width parameters.
Remarks
o When using the Histogram LineStyle, the width parameter determines the maximum width that each histogram bar is allowed to grow to. So, specify large values (such as 20) to allow the histogram bars to grow as you increase bar

spacing.
e By default, the Description of the DataSeries is drawn as a label in the upper left corner of the pane. You can set the DataSeries' Description property to change this label, or use the overloaded version of the method.

Example

protected override void Execute() {
// Plots KAMA series of Average prices
PlotSeries(PricePane, KAMA.Series(((High+Low)/2), 20), Color.Chocolate, WealthLab.LineStyle.Solid, 2);

Wealth-Lab 7:

PlotSeriesDualFillBand

void PlotSeriesDualFillBand(ChartPane pane, DataSeries series1, DataSeries series2, Color fillColorl, Color fillColor2, Color color, LineStyle style, int width);
void PlotSeriesDualFillBand(ChartPane pane, DataSeries series1, DataSeries series2, Brush brush1, Brush brush2, Color color, LineStyle style, int width);

Plots and fills bands composed of two DataSeries (series1 and series2) that periodically cross over each other, on the specified pane. Each individual DataSeries is plotted using the specified color, style, and width. The band between each
DataSeries is filled with alternating colors (or brushes). fillColor1 (or brush1) is used when series1 is above series2, and fillColor2 (or brush2) when series2 is above series1.

Remarks
o Use fillColors and brushes that are semi-transparent, so that the chart bars can show up behind the filled bands.

o Histogram style does not make sense for filled bands, this style is treated as Solid by PlotSeriesDualFillBand.
e By default, the Description of the DataSeries is drawn as a label in the upper left corner of the pane. You can set the DataSeries' Description property to change this label.

Example

protected override void Execute() {
// Plots and fills bands composed of Average Price and KAMA series that cross over each other.
Plot iesDualFillBand(PricePane, KAMA.Series(Close, 10), ((High+Low)/2), Color.Red, Color.Blue, Color.Black, LineStyle.Solid, 1);

Wealth-Lab 7:

PlotSeriesFillBand

void PlotSeriesFillBand(ChartPane pane, DataSeries upper, DataSeries lower, Color color, Color fillColor, LineStyle style, int width);
void PlotSeriesFillBand(ChartPane pane, DataSeries upper, DataSeries lower, Color color, Brush fillBrush, LineStyle style, int width);

Plots and fills an upper and lower band of two DataSeries, in the specified chart pane. The upper and lower bands are plotted using the specified color, style and width. The interior of the band is filled using the specified fillColor, or the
specified fillBrush.

Remarks
e Use fillColors and fillBrushes that are semi-transparent, so that the chart bars can show up behind the filled band.

e Histogram style does not make sense for filled bands, this style is treated as Solid by PlotSeriesFillBand.
e By default, the Description of the DataSeries is drawn as a label in the upper left corner of the pane. You can set the DataSeries' Description property to change this label.

Example

protected override void Execute() {
BBandLower bbL = BBandLower.Series(Close, 20, 2);
BBandUpper bbU = BBandUpper.Series(Close, 20, 2);
SolidBrush shadowBrush = new SolidBrush(Color.FromArgb (50, Color.Violet));
PlotSeriesFillBand (PricePane, bbU, bbL, Color.Silver, shadowBrush, LineStyle.Solid, 2);

Wealth-Lab 7:

PlotSeriesOscillator

void PlotSeriesOscillator(ChartPane pane, DataSeries source, double overbought, double oversold, Color overboughtColor, Color oversoldColor, Color color, LineStyle style, int width);
void PlotSeriesOscillator(ChartPane pane, DataSeries source, double overbought, double oversold, Brush overboughtBrush, Brush oversoldBrush, Color color, LineStyle style, int width);

Plots the specified DataSeries (source) in the specified pane, using the provided color, style and width. Additionally, it allows you to define overbought and oversold levels. When the source moves below the oversold area, this area of
the chart is filled using the oversoldColor (or oversoldBrush). Conversely, when the source moves above the overbought area, that area of the chart is filled with the overboughtColor (or overboughtBrush).

Remarks

e By default, the Description of the DataSeries is drawn as a label in the upper left corner of the pane. You can set the DataSeries' Description property to change this label.

Example

protected override void Execute() {
//Create and plot RSI indicator
RSI rsi = RSI.Series(Close, 14);
ChartPane rsiPane = CreatePane(40, true, true);
PlotSeriesOscillator(rsiPane, rsi, 70, 30, Color.Green, Color.Red, Color.CadetBlue, LineStyle.Solid, 1);

Wealth-Lab 7:

PlotStops

void PlotStops();

Call PlotStops to cause stop and limit orders to be plotted on the chart. Stop and limit orders will appear as small colored dots on the chart, drawn at the appropriate bar and price levels. The stop/limit plots are color coded by order type:
Buy = blue

Sell = red

Short = fuchsia
Cover = green

e o o o

Example

protected override void Execute() {
// Displays Stop and Limit orders
PlotStops();
for (int bar = 20; bar < Bars.Count; bar++)
{
if (IsLastPositionActive)

{

11AtLimit (bar+l, LastPosition, Highest.Series(High, 20) [bar]) == null)
>11AtStop(bar+1l, LastPosition, Lowest.Series(Low, 20)[bar]);

else
{
if (BuyAtLimit(bar+l, Low[bar]-ATR.Series (Bars,5) [bar]) == null)
BuyAtStop(bar+l, High[bar]+ATR.Series (Bars,5) [bar]);

PlotBarHistory
PlotBarHistoryStyle

Wealth-Lab 7: UserStrategyBase > Chart
Rendering

PlotSymbol

void PlotSymbol(ChartPane pane, Bars bars, Color upColor, Color downColor);

Plots the Bars object specified in the bars parameter onto the chart, in the indicated pane. To superimpose another symbol onto the price pane, use the PricePane property as the value of the pane parameter. The pane that is selected is
automatically rescaled to support the range of the plotted data. The upColor and downColor parameters determine the colors that will be used to plot "up" bars (close greater than open) and "down" bars (close less than or equal to open).

Remarks

o The Bars object that is being plotted must be synchronized to the symbol being charted, or PlotSymbol will fail.
o Since it's not possible to align the x-axis for multiple charts, PlotSymbol will not work with the Trending Chart Styles.

Example

protected override void Execute () { // Some cosmetics
HideVolume () ;
HidePanelLines () ;

//Plot Microsoft data in a new pane
Bars msft = GetExternalSymbol ("MSEFT", true);

ChartPane msftPane = CreatePane(100, false, true);
PlotSymbol (msftPane, msft, Color.Silver, Color.Silver);

Wealth-Lab 7:

PlotSyntheticSymbol
void PlotSyntheticSymbol(ChartPane pane, string symbol, DataSeries open, DataSeries high, DataSeries low, DataSeries close, DataSeries volume, Color upBarColor, Color downBarColor);
Allows you to plot a synthetic symbol on the chart, in the specified pane. A synthetic symbol is composed of a group of DataSeries that represent the symbol's open, high, low, close and volume. The symbol parameter indicates a string
that represents the name that should be applied to the synthetic symbol, this is plotted as a label on the chart. The upBarColor and downBarColor parameters determine the color to use when plotting up bars (close greater than open) and
down bars (close less than or equal to open).
Remarks

e In order to plot a synthetic symbol, its constituent DataSeries must by synchronized to the main chart data that is already being plotted. If this is not the case, call Synchronize on each of the underlying DataSeries to synchronize

them before plotting.
e Since it's not possible to align the x-axis for multiple charts, PlotSyntheticSymbol will not work with the Trending Chart Styles.

Example

protected override void Execute() {
// Plot candle which consists of average Open/High/Low/Close values
ChartPane SMAPane = CreatePane(100, true, true);
DataSeries O = SMA.Series(Open, 20);
DataSeries H = SMA.Series(High, 20);
DataSeries L = SMA.Series(Low, 20);
DataSeries C = SMA.Series(Close, 20);
PlotSyntheticSymbol (SMAPane, "SMACandle", O, H, L, C, null, Color.Blue, Color.Red);

Pass "Price" for paneTag in Plot functions

Wealth-Lab 7: UserStrategyBase > Chart
Rendering

PricePane Property
ChartPane PricePane

Returns the ChartPane where the Bars of the chart are plotted. You can use this pane to plot other indicators, such as moving averages and Bollinger Bands, or as a parameter to many other WealthScript cosmetic chart methods such as
AnnotateBar and DrawPolygon.

Remarks

o Even if the Strategy is operating in a context that is not charted (such as the Strategy Monitor), this property will not return null.
o See the documentation on the ChartPane object for more information about its properties and methods.

Wealth-Lab 7:
SetBackgroundColor

SetBackgroundColor(int bar, Color color);

Sets the color that will be used to render the background of the chart at the individual bar. The background is colored from top to bottom, encompassing all panes on the chart.

Remarks

e Use SetPaneBackgroundColor to color the background of individual panes.

Example

protected override void Execute() {
// Plot the weekly MACD in our daily chart
SetScaleWeekly () ;
DataSeries smaWeekly = SMA.Series(Close, 52);
RestoreScale() ;
smaWeekly = Synchronize (smaWeekly);
for (int bar = 52; bar < Bars.Count; bar++)
{
if (Close[bar] > smaWeekly[bar])
{
SetBackgroundColor (bar, Color.LightGreen);
}
else
{
SetBackgroundColor (bar, Color.LightPink);

Wealth-Lab 7:

SetBarColor
SetBarColor(int bar, Color color);

Sets the color that will be used to render the individual bar on the chart that is specified by the bar parameter.

Example

protected override void Execute() {

// Color bars green when RSI < 20, otherwise
// color up days blue and down days red }
DataSeries hRSI = RSI.Series(Close, 14);
for (int bar = 50; bar < Bars.Count; bart+)
{

if (hRSI[bar] < 60)

SetBarColor (bar, Color.Green);

else

if (Close[bar] > Close[bar-1])

SetBarColor (bar, Color.Blue);

else

SetBarColor (bar, Color.Red);

Wealth-Lab 7:

SetBarColors

void SetBarColors(Color colorUpBars, Color colorDownBars);

Changes that colors that will be used to plot the bars of the chart. "Up" bars are defined as close greater than open, and these bars will be colored using colorUpBars. Bars where close is less than or equal to open will be colored using
colorDownBars.

Example

protected override void Execute() {
SetBarColors(Color.Navy, Color.Maroon);

Wealth-Lab 7:

SetLogScale

void SetLogScale(ChartPane pane, bool logScale);

Turns semi-log scaling on or off for the specified pane. The logScale parameter indicates whether semi-logarithmic scaling should be applied to the pane.

Example

protected override void Execute() {
SetLogScale (PricePane, true);

SetBackgroundColor

Wealth-Lab 7: UserStrategyBase > Chart
Rendering

SetPaneBackgroundColor
void SetPaneBackgroundColor(ChartPane pane, int bar, Color color);

Changes the background color of the specified pane, for the specified bar, to the color indicated.

Example

protected override void Execute() {
// Plot RSI and CMO, color backgrounds to show overbought/oversold levels
ChartPane RSIPane = CreatePane(30, true, true);
ChartPane CMOPane = CreatePane(30, true, true);
PlotSeries(RSIPane, RSI.Series(Close, 14), Color.DarkBlue, WealthLab.LineStyle.Solid, 2);
PlotSeries(CMOPane, CMO.Series(Close, 14), Color.Blue, WealthLab.LineStyle.Solid, 2);
for (int bar = 20; bar < Bars.Count; bar++)
{
if (RSI.Series(Close, 14) [bar] < 30)
SetPaneBackgroundColor (RSIPane, bar, Color.LightGreen);
else if (RSI.Series(Close, 14)[bar] > 70)
SetPaneBackgroundColor (RSIPane, bar, Color.LightPink);
if (CMO.Series(Close, 14) [bar] < =50)
SetPaneBackgroundColor (CMOPane, bar, Color.LightGreen);
else if (CMO.Series(Close, 14)[bar] > 50)
SetPaneBackgroundColor (CMOPane, bar, Color.LightPink);

Wealth-Lab 7:

SetPaneMinMax
void SetPaneMinMax(ChartPane pane, double min, double max);

Allows you to set the scale of a particular pane manually. The minimum and maximum (min and max) values that you supply will be used to define the visible range of the pane. The actual visible scale of the pane will still dynamically
adjust if the chart or plotted indicators extend beyond the range that you specify.

Example

protected override void Execute() {
// Make sure a certain RSI range is always visible in the pane
ChartPane RSIPane = CreatePane(60, true, true);
PlotSeries(RSIPane, RSI.Series(Close, 14), Color.Navy, WealthLab.LineStyle.Solid, 1);
SetPaneMinMax (RSIPane, 30, 70);

Wealth-Lab 7:

SetSeriesBarColor
void SetSeriesBarColor(int bar, DataSeries ds, Color color);

Allows you to specify colors for individual bars of a specific DataSeries (ds) that is plotted on the chart.

Example

protected override void Execute () {
// Color Bars of the indicator based on oversold/overbought levels
DataSeries rsi = RSI.Series(Close, 14);
ChartPane rsiPane = CreatePane(60, true, true);
PlotSeries(rsiPane, rsi, Color.Gray, WealthLab.LineStyle.Solid, 2);
for (int bar = 50; bar < Bars.Count; bar++)
{
if (rsifbar] > 60)
SetSeriesBarColor(bar, rsi, Color.Red);
else if (rsi[bar] < 40)
SetSeriesBarColor(bar, rsi, Color.Blue);

Pass "Volume" for paneTag in Plot functions

Wealth-Lab 7: UserStrategyBase > Chart
Rendering

VolumePane Property

ChartPane VolumePane

Returns the ChartPane that the volume is being plotted in.
Remarks

o Even if the Strategy is operating in a context that is not charted (such as the Strategy Monitor), this property will not return null.
o See the documentation on the ChartPane object for more information about its properties and methods.

Wealth-Lab 7:

Data Access
The Data Access category contains methods you can use to access the data that the Strategy is currently operating on, and additional data that it might need.

BarHistory
Wealth-Lab 7: BarHistory

Bars Property
Bars Bars

Returns the Bars object that the Strategy is currently operating on. Initially, this is the symbol being charted in the chart. But the Bars object can be changed via calls to SetContext, and the various
SetScale methods to work in different time scales.

Remarks
e See the Bars object reference for a listing of available properties and methods on the Bars object.

Wealth-Lab 7:

ClearExternalSymbols

int ClearExternalSymbols();
int ClearExternalSymbols(string symbol);

Clears any external (secondary) symbol data. External symbols are obtained from calls to either GetExternalSymbol, SetContext, and from changing the data scale in the script. When external symbol
data is requested in a script, Wealth-Lab caches the symbol data so that it does not have to be loaded again if the same symbol is requested later. This method allows you to clear this internal cache.
The symbol parameter is optional. If it is specified, only that specific external symbol will be cleared. ClearExternalSymbols returns the number of symbols that were cleared from memory.

Example

protected override void Execute () {
Bars msft = GetExternalSymbol("MSFT", true);
ChartPane msftPane = CreatePane(50, true, true);
PlotSymbol (msftPane, msft, Color.Blue, Color.Red);
PrintDebug ("Cleared ext. symbols: " + ClearExternalSymbols());

Qualify with BarHistory, e.g.
bars.Close

Wealth-Lab 7: BarHistory, BarData

Close Property
DataSeries Close

Returns a DataSeries object that represents the closing prices of the Bars object that the Strategy is currently operating on. You can also access the closing prices via the Bars.Close property. Access
individual closing prices via the square bracket syntax:

//Access the close of the last bar
double lastClose = Close[Bars.Count - 1];

Remarks

e See the DataSeries object reference for a listing of available properties and methods on the DataSeries object.

Example

protected override void Execute() { //Access closing price of the last bar
double lastClose = Close[Bars.Count-1];
// The string is output with 2 digits
DrawLabel (PricePane, "Last close: " + String.Format("{0:f}", lastClose), Color.Black);

BacktestData

Wealth-Lab 7: UserStrategyBase >

Miscellaneous
DataSetSymbols Property
IList<string> DataSetSymbols

Returns a list of strings that contain the symbols in the DataSet that contains the symbol currently being processed by the Strategy.

Remarks

o Known issue: When using SetContext in a DataSetSymbols loop, the dialog "Invalid Benchmark Buy and Hold Symbol:" is displayed when encountering a symbol with a null Bars object.
This occurs even if Benchmark Buy & Hold is not enabled.

o Known issue: Synchronization issue with trading DataSetSymbols when the starting dates of the symbols' series are not the same, provided that some symbols are traded before the start dates
of other symbols. For partial workarounds refer to this post.

Example

using System;

using System.Collections.Generic;
using System.Text;

using System.Drawing;

using WealthLab;

https://www.wealth-lab.com/Forum/Posts/38818/Page/1#199418

using WealthLab.Indicators;
using System.Collections;

namespace WealthLab.Strategies

{
public class AboveMA : WealthScript
{

private StrategyParameter paramPeriod;

public AboveMA ()
{
paramPeriod = CreateParameter ("MA Period", 200, 10, 200, 5);

protected override void Execute()
{
int period = paramPeriod.Valuelnt;
DataSeries OverMA = new DataSeries(Bars, String.Concat ("Number above MA (",period,")"));

for (int ds = 0; ds < DataSetSymbols.Count; ds++)
{
SetContext (DataSetSymbols[ds], true);
for (int bar = period; bar < Bars.Count; bar++)
if(Bars.Close[bar] > SMA.Series(Bars.Close,period) [bar])
OverMA [bar]++;
RestoreContext () ;

ChartPane omaPane = CreatePane (20, true, true) ;

ChartPane omapctPane = CreatePane (20, true, true);

DataSeries PctOverMA = OverMA/DataSetSymbols.Count*100;
PctOverMA.Description = String.Concat ("Pct above MA (",period,")");
PlotSeries(omaPane, OverMA, Color.Blue, LineStyle.Histogram,2);
PlotSeries(omapctPane, PctOverMA, Color.DarkGreen, LineStyle.Solid,2);

Qualify with BarHistory, e.g. bars.Date
Wealth-Lab 7: BarHistory, BarData

Date Property
IList<DateTime> Date

Returns a list of DateTime values that represents the historical date/times of the Bars object that the Strategy is currently operating on. You can also access the Dates via the Bars.Dates property.
Access individual date values via the square bracket syntax:

//Access the last date being charted
DateTime lastDate = Date[Bars.Count - 1];

Example
protected override void Execute () { //Access the last date being charted
DateTime lastDate = Date[Bars.Count - 1];
DrawLabel (PricePane, "Last trading date: "™ + String.Format("{0:d}", lastDate), Color.Black);
}
IndexOf

Wealth-Lab 7: BarHistory > Members

DateTimeToBar
int DateTimeToBar(DateTime date, bool exactMatch);

Returns the bar number (in the Bars object that the Strategy is currently operating on) that matches the DateTime provided in the date parameter. If exactMatch is true, the precise DateTime value
must be located in the Bars object. Otherwise, the first bar whose DateTime is greater than or equal to the specified date is returned.

Example

protected override void Execute () {
ClearDebug () ;
DateTime d = new DateTime(2008, 07, 15);
int Bar = DateTimeToBar (d, true);

if(Bar == -1)

PrintDebug("This bar does not exist in the chart");
else
{

for (int bar = 1; bar < Bars.Count; bar++)

if (bar == Bar)
BuyAtClose (bar, "Buy");
}
}
GetHistory

Wealth-Lab 7: UserStrategyBase >
Miscellaneous

GetExternalSymbol

Bars GetExternalSymbol(string symbol, bool synchronize);

Bars GetExternalSymbol(string dataSetName, string symbol, bool synchronize);

Returns a Bars object for the specified stock/futures symbol. The Bars object will be returned in the same data scale as the Bars object that the Strategy is currently operating on. If data for the
specified symbol is not available, this method will raise an error. The synchronize method controls whether the returned Bars object will be automatically synchronized to the current Bars object.
This is important if you want to plot the Bars, or indicators that are created from it. You can defer the synchronization by calling the Synchronize method at some later time.

Optional parameter dataSetName allows to specify the DataSet that will be searched when an external symbol is requested, which can differ from the DataSet of the symbol on which the Strategy is
being executed.

Note: By specifying a DataSet with dataSetName, you are essentially specifying the associated Provider. If symbol is missing in the specified DataSet, but it's possible to find it in another DataSet of
the same Provider, then it can be returned. This is in contrast to not specifying a DataSet in which case an alphabetical search through DataSets of any Provider is used to return the data.

Example

protected override void Execute() {
try

// Create a DataSeries with the relative strength of the current symbol vs. S&P 500

Bars spy = GetExternalSymbol ("SPY", true);

DataSeries rs = DataSeries.Abs(Close / spy.Close);

DataSeries rs3 = rs>>(21 * 3);

rs.Description = "Relative strength " + Bars.Symbol + "/" + spy.Symbol;

rs3.Description = "Relative strength " + Bars.Symbol + "/" + spy.Symbol + " (3 months ago)";

HideVolume () ;

ChartPane spyPane = CreatePane(40, false, true);
ChartPane rsPane = CreatePane(40, false, true);
PlotSymbol (spyPane, spy, Color.Blue,Color.Red);
PlotSeries(rsPane, rs, Color.Black, LineStyle.Solid, 1);
PlotSeries(rsPane, rs3, Color.Blue, LineStyle.Solid, 1);

// Compare relative strength today and then 3 months ago

for (int bar = 21 * 3; bar < Bars.Count; bar++)

{
// Highlight when the ratio today is greater than 3 months ago
// and is also breaking a new 3 month relative high

if(rs[bar] == Highest.Series(rs, 21 * 3) [bar])
if(rs[bar] > rs3[bar])
{
SetBarColor (bar, Color.Blue);
rsPane.SetBackgroundColor (bar, Color.FromArgb (30,Color.Blue));

}
catch

{

PrintDebug("No data or could not find series");

Wealth-Lab 7:

GetSessionOpen Property
double GetSessionOpen(string symbol)
Returns current trading session's opening price for the specifed symbol. Returns 0 if the session's open price is not available or if the method is not supported by the DataSet's Data Provider.

GetSessionOpen() is designed primarily for EOD Strategies that require action based on the trading session's opening price (see Example). While it's still recommended to perform a Daily price
update beforehand, you can schedule the Strategy Monitor to execute on the open of the market session. If you require a short delay to ensure all stocks have opened, you can right click the Strategy
and choose "Run this Strategy now" or run the backtest in a Strategy Window.

Remarks

e GetSessionOpen() employs the Static Data Provider to return the session's opening price; implementations vary by Provider. For example, in response to the first call to GetSessionOpen(), the
Fidelity Static Provider requests and caches the opening prices for all symbols in the DataSet. If the DataSet is large, processing the first symbol in the DataSet will appear slow while opening
prices are collected.

o Intraday Strategies can directly obtain the opening price by finding the open price of the first bar of the current day, given by Open[bar - Bars.IntradayBarNumber(bar)] in a bar-indexed loop.
Nonetheless, if the open price is required prior to the completion of the first intraday bar, consider using GetSessionOpen().

Example
This example shows how to employ GetSessionOpen() in a trading Strategy. For all bars prior to the last bar of the chart, the Strategy can access the opening price of the next bar. However, when

processing the final bar of the chart, the open is obtained by calling GetSessionOpen(). If the value returned is not greater than 0, then the result is invalid and a trading Alert will not be processed.
Otherwise, the Strategy will enable the BuyAtLimit order if the opening price of the "trade bar" is below the low of the last complete bar.

Example

protected override void Execute () {
double openTradeBar = 0;
int lastCompleteBar = Bars.Count - 1;

for (int bar = 0; bar < Bars.Count; bar++)
{
if (IsLastPositionActive)
{
Position p = LastPosition;
if (bar - p.EntryBar > 1)
SellAtMarket (bar + 1, p);
}
else
{
if (bar == lastCompleteBar)

openTradeBar = GetSessionOpen(Bars.Symbol) ;
DrawLabel (PricePane, "Today's Opening Price = " + openTradeBar.ToString("0.00"));

}
else
openTradeBar = Open[bar+l];

if (openTradeBar > 0 && openTradeBar < Low[bar])
BuyAtLimit (bar + 1, Low[bar] * 0.95);

Qualify with BarHistory, e.g.
bars.High

Wealth-Lab 7: BarHistory, BarData

High Property
DataSeries High

Returns a DataSeries object that represents the high prices of the Bars object that the Strategy is currently operating on. You can also access the high prices via the Bars.High property. Access
individual high prices via the square bracket syntax:

//Access high price of the last bar
double lastHigh = High[Bars.Count - 1];

Remarks

o See the DataSeries object reference for a listing of available properties and methods on the DataSeries object.

Example
protected override void Execute () { // Print high price of the last bar
double high = High[Bars.Count-1];
DrawlLabel (PricePane, "High: " + String.Format("{0:f}", high), Color.Black);

Qualify with BarHistory, e.g. bars.Low
Wealth-Lab 7: BarHistory, BarData

Low Property
DataSeries Low

Returns a DataSeries object that represents the low prices of the Bars object that the Strategy is currently operating on. You can also access the low prices via the Bars.Low property. Access
individual low prices via the square bracket syntax:

//Access low price of the last bar
double lastLow = Low[Bars.Count - 1];

Remarks

e See the DataSeries object reference for a listing of available properties and methods on the DataSeries object.

Example
protected override void Execute () { // Print low price of the last bar
double low = Low[Bars.Count-1];
DrawLabel (PricePane, "Low: " + String.Format("{0:f}", low), Color.Black);

Qualify with BarHistory, e.g.
bars.Open

Wealth-Lab 7: BarHistory, BarData

Open Property
DataSeries Open

Returns a DataSeries object that represents the open prices of the Bars object that the Strategy is currently operating on. You can also access the open prices via the Bars.Open property. Access
individual open prices via the square bracket syntax:

//Access open price of the last bar
double lastOpen = Open[Bars.Count - 1];

Remarks

e See the DataSeries object reference for a listing of available properties and methods on the DataSeries object.

Example
protected override void Execute() { // Print open price of the last bar
double open = Open[Bars.Count-1];
DrawLabel (PricePane, "Open price: " + String.Format("{0:f}", open), Color.Black);

Wealth-Lab 7: Not required

RestoreContext

void RestoreContext();

Changes the context of the Strategy back to the Bars object that it was originally invoked on. In a Strategy window, this is the symbol that you are charting. The context can change to a different
symbol by calling SetContext.

Remarks

o RestoreContext restores the context symbol only, but preserves changes in data scale that were made by calling the various SetScale methods.
e After you are through using an external symbol, you should call RestoreContext to restore the Strategy back to the original symbol.

Example

protected override void Execute () {
// Compare the RSI of the stock with the RSI of QQQQ
DataSeries QQQQ RSI;
SetContext ("QQQQ", true);
Q000 RSI = RSI.Series(Close, 30);
RestoreContext () ;
HideVolume () ;
ChartPane gqgqg = CreatePane(50, true, true);
ChartPane rsi = CreatePane(50, false, true);
PlotSeries(ggqgq, QQQQ RSI, Color.Red, WealthLab.LineStyle.Solid, 2);
PlotSeries(rsi, RSI.Series(Close, 30), Color.Blue, WealthLab.LineStyle.Solid, 2);

Use bars from UserStrategyBase > Misc >
GetHistory

Wealth-Lab 7: Not required

SetContext

void SetContext(string symbol, bool synchronize);
void SetContext(Bars bars);

Sets the "context" of the Strategy to the symbol specified. This means that subsequent Positions (BuyAtMarket, ShortAtMarket, etc.) will be entered on the new symbol. Use this technique to
backtest pairs trading Strategies, for example. The synchronize parameter specifies whether the data for the new symbol will be automatically date-synchronized with the primary symbol (the one
that the Strategy was originally executed on, and charted.) If you defer synchronization, you can synchronize at a future point using the Synchronize function. This is required if you want to plot the
symbol, or indicators produced from it. If data for the specified symbol is not available, SetContext will throw an error.

Remarks

o Call the method without the optional synchronize parameter for automatic synchronization.
e Call RestoreContext to restore the context to the original symbol.
e The SetContext(Bars) overload was introduced to allow trades on the synthetic option symbol (but is not limited to this scenario). It's always synchronized to the primary symbol.

Example

using System;

using System.Collections;
using System.Text;

using System.Drawing;
using WealthLab;

namespace WealthLab.Strategies
{
public class MyStrategy : WealthScript
{
protected override void Execute()

{
SortedList V1st = new SortedList(DataSetSymbols.Count);

// Collect turnover values for the DataSet

for (int ds = 0; ds < DataSetSymbols.Count; ds++)

{
SetContext (DataSetSymbols[ds], true);
Vlst.Add(ds, Close[Bars.Count-1] * Volume [Bars.Count-1]);
RestoreContext () ;

ICollection v = Vlst.Keys;
foreach(int str in v)
PrintDebug (DataSetSymbols[str] + " -- $" + Vlst[str]);

Synchronize

Wealth-Lab 7: TimeSeriesSynchronizer

Synchronize

DataSeries Synchronize(DataSeries source);
Bars Synchronize(Bars source);

Returns a new DataSeries or Bars object, based on the source DataSeries or Bars object. The new DataSeries or Bars object is date-synchronized to the primary symbol that the Strategy was executed
on. Use this method when you need to synchronize an external symbol acquired by calling SetContext or GetExternalSymbol, or any indicators created from them, for plotting. Also, use this method
to expand a compressed DataSeries or Bars object, such as those obtained after calls to SetScaleWeekly or SetScaleMonthly. You must synchronize DataSeries and Bars objects if you want to plot
them on the chart, or use them in operations with the primary Bars object, or indicators created from it.

Remarks

o If the primary symbol contains dates that occur before the first date in the source DataSeries or Bars, the new DataSeries or Bars will contain zero values for these dates.
o If the primary symbol contains dates that do not occur within the source DataSeries or Bars, they will be inserted, and the previous available value used for these dates.
o If'the source contains dates that do not occur in the primary symbol, these values will be eliminated from the new DataSeries or Bars.

Example

protected override void Execute() {
Bars msft = new Bars("MSFT", BarScale.Daily, 1);

try

{
msft = GetExternalSymbol("MSFT", false);

}
catch

{
PrintDebug("No MSFT data?");

msft = Synchronize(msft);

ChartPane msftPane = CreatePane(50, true, true);

PlotSymbol (msftPane, msft, Color.Blue, Color.Red);

PlotSeries(msftPane, SMA.Series(msft.Close,10), Color.Red, WealthLab.LineStyle.Solid, 1);

Wealth-Lab 7:

TrendlineValue

double TrendlineValue(int bar, string trendlineName);

Provides access to the specified manually drawn trendline by name, and returns the value of that trendline at the specified bar on the chart. If the named trendline could not be found for the current
symbol and time scale, the method returns 0.

Remarks

o In a Strategy that loops through DataSet symbols using SetContext, TrendlineValue is not working. If you click on the symbol with the trendline, TrendlineValue code is executed whereas
when you click on another symbol to start the Strategy, TrendlineValue returns zero.

This is by design, and the reason is that it's not possible to access a Trendline Value for other symbols through SetContext since the TrendLine(s) don't exist in the current chart.

Example

protected override void Execute () {
double res;
for (int bar = 1; bar < Bars.Count; bar++)

{

res = TrendlineValue(bar-1, "Resistance");
if (Close[bar-1] < res)

{

res = TrendlineValue(bar, "Resistance");
if (Close[bar] >= res)
{

SetBarColor (bar, Color.Green);
DrawCircle(PricePane, 5, bar, res, Color.Red, Color.Red, WealthLab.LineStyle.Solid, 5, false);

Qualify with BarHistory, e.g. bars.Volume
Wealth-Lab 7: BarHistory, BarData

Volume Property

DataSeries Volume

Returns a DataSeries object that represents the volume of the Bars object that the Strategy is currently operating on. You can also access the volume via the Bars.Volume property. Access individual
volume values via the square bracket syntax:

//Access the volume of the first bar
double firstBarVolume = Volume[0];

Remarks

o See the DataSeries object reference for a listing of available properties and methods on the DataSeries object.

Example

protected override void Execute () { // Get turnover on the last bar (close * volume)
double turnover = Close[Bars.Count-1] * Volume [Bars.Count-1];

// Print stock turnover
DrawLabel (PricePane, "Turnover: " + String.Format("${0:0,0}", turnover), Color.Black);

TimeSeries, IndicatorBase

Wealth-Lab 7: TimeSeries,
IndicatorBase

DataSeries Object

DataSeries(string description)
DataSeries(Bars bars, string description)
DataSeries(DataSeries source, string description)

The DataSeries object represents a series of values (double type) with corresponding dates. You can perform mathematical operations on DataSeries as if they were primary types:

//Get average of high and low price
DataSeries avg = (High + Low) / 2;

You can also create offset copies of a DataSeries by using the shift operators, >> and <<:

//Shift a moving average 2 bars to the right
DataSeries shiftedMA = SMA.Series(Close, 14) >>2;

The most practical use of the DataSeries function is to return a new zero-filled DataSeries that has the same number of elements as the Bars parameter. Use the result to fill the series bar by bar with
calculated values:

Wealth-Lab 7:

protected override void Execute ()
{
// Create a zero-filled series
DataSeries binSeries = new DataSeries(Bars, "Binary Series");
// Fill the series with values based on some logic
for (int bar = 1; bar < Bars.Count; bar++)
{
if(High[bar] > High[bar-1])

binSeries[bar] = 1;
else if(Low[bar] < Low[bar - 1])
binSeries[bar] = -1;

}
ChartPane cp = CreatePane (40, true, false);
PlotSeries (cp, binSeries, Color.Black, LineStyle.Histogram, 20);

[l
Wealth-Lab 7: TimeSeries,

IndicatorBase
[l indexer Property
double this[int i]

Allows you to access one of the values in the DataSeries. The DataSeries contains a number of values, indexed between 0 and Count - 1. Provide the index number of the value you want to access in
the i parameter.

//Access the first and last values of a DataSeries (ds)
double firstValue = ds[0];
double lastValue = ds[ds.Count - 1];

Abs

Wealth-Lab 7: TimeSeries > Members

Abs

static DataSeries Abs(DataSeries source);

This class level (static) method returns a new DataSeries that is the absolute value of the specified source DataSeries.

Example
protected override void Execute () { //Return the absolute value of Rate of Change
//DataSeries roc = ROC.Series(Close, 20);
DataSeries absRoc = DataSeries.Abs(ROC.Series(Close, 20));
DrawlLabel (PricePane, "Abs(ROC) value on last bar: " + String.Format("{0:f}", absRoc[absRoc.Count-1]), Color.RoyalBlue);
}
Count

Wealth-Lab 7: TimeSeries > Members

Count Property
int Count

Returns the number of values contained in the DataSeries. The values are accessed by index, starting at index 0 and ending at index Count - 1.

Example

protected override void Execute() {
for (int bar = 20; bar < Bars.Count; bar++)
{

// Your trading system rules

DateTimes

Wealth-Lab 7: TimeSeries > Members

Date Property
IList<DateTime> Date

Returns the list of DateTimes that are associated with the values contained in the DataSeries. The number of DateTimes in the Date list is always equal to the number of values contained in the
DataSeries.

//Access the first and last dates contained in the DataSeries (ds)
DateTime dtFirst = ds.Date[0];
DateTime dsLast = ds.Date[ds.Count - 1];

Example

protected override void Execute () {
//Access the first and last dates

DateTime firstDate = Date([0];
DateTime lastDate = Date[Bars.Count-1];
DrawlLabel(PricePane, "First trading date: " + String.Format("{0:d}", firstDate), Color.Black);
DrawlLabel (PricePane, "Last trading date: " + String.Format("{0:d}", lastDate), Color.Black);
}
Description

Wealth-Lab 7: TimeSeries > Members

Description Property
string Description

Represents the description associated with the DataSeries. You can change the description by assigning a different string value to this property. The Description is shown as a label in charts when the
DataSeries is plotted, and appears in the tooltip that is visible when you move the mouse over an indicator on the chart.

Example

protected override void Execute () {
// Average price series
DataSeries average = (High + Low) / 2;
average.Description = "Average Price"
PrintDebug (average.Description);

FirstValidindex
Wealth-Lab 7: TimeSeries > Members

FirstValidValue Property
int FirstValidValue

Returns the bar number of the first "valid" value contained in the DataSeries. When an indicator (all indicators are DataSeries) is plotted, the plotting actually begins at the FirstValidValue. For
previous bars, the indicator is not plotted. For example, the FirstValidValue of a 30 bar moving average would be bar number 29.

Example

protected override void Execute () {
// Some price series
DataSeries mySeries = SMA.Series(Close, 100);
PlotSeries(PricePane, mySeries, Color.Blue, WealthLab.LineStyle.Solid, 2);
ClearDebug () ;
PrintDebug (mySeries.FirstValidvalue);

// Sets the trading loop to the first "valid" value of the DataSeries
for (int bar = mySeries.FirstValidvValue; bar < Bars.Count; bar++)

{

if (IsLastPositionActive)
{
if(CrossUnder(bar, High, mySeries[bar]))
SellAtMarket (bar+l, LastPosition, "Exit Long");

}
else

{
if(CrossOver(bar, Low, mySeries[bar]))
BuyAtMarket (bar+1l, "Enter Long");

GetHighest
Max

Wealth-Lab 7: TimeSeries > Members, Static
Methods

MaxValue Property
double MaxValue

Returns the maximum (highest) value that exists in the entire DataSeries.

Example

protected override void Execute () {

// Show highest price

DataSeries mySeries = Highest.Series(High, 1);
PrintDebug ("Highest price registered = " + mySeries.MaxValue);
}
GetLowest
Min
Wealth-Lab 7: TimeSeries > Members, Static
Methods
MinValue Property
double MinValue

Returns the minimum (lowest) value that exists in the entire DataSeries.

Example

protected override void Execute () {
// Show lowest price
DataSeries mySeries = Lowest.Series(Low, 1);
PrintDebug("Lowest price registered = " + mySeries.MinValue);

StreamingValue

Wealth-Lab 7: TimeSeries > Members

Partial Property
double PartialValue

Contains the value based on the partial bar in a streaming chart. In a streaming chart, a partial bar is visible at the far right end of the chart, containing the partial values for open, high, low, and
close. Certain indicators can also update based on partial values.

Remarks

o If the DataSeries does not have a partial value available, the PartialValue property returns Double.NaN (not a number).

Example

protected override void Execute() {
// How to access the opening price of an incomplete (Ghost) bar
// Helpful when trading gaps and in Opening Range Breakout strategies etc.

// Run this Strategy on Daily scale shortly after market opens in Streaming mode
// Your Streaming data provider should support partial values (e.g. Fidelity, Yahoo)

if(Bars.Scale != BarScale.Daily) {
DrawLabel (PricePane, "To be used on Daily scale", Color.Red);
return;

}

if (!IsStreaming) {

DrawLabel (PricePane, "Enable Streaming first", Color.Red);
}
else {
for (int bar = 1; bar < Bars.Count; bar++)
{
double OpenPrice = (bar < Bars.Count - 1 ? Open[bar + 1] : Open.PartialValue);

// Open.PartialValue equals double.NaN if streaming is not enabled
if (OpenPrice == double.NaN)
continue;

if(bar == Bars.Count-1)
DrawLabel (PricePane, OpenPrice.ToString());

Wealth-Lab 7:
Fundamental Data
The Fundamental Data category consists of methods you can use to access and manipulate fundamental data.

GetEventDataPoints
Wealth-Lab 7: BarHistory > EventData

FundamentalDataltems

IList<Fund; IItem> Fund: 1D. string itemName);

IList<Fund: tem> FundamentalDatal string symbol, string itemName);
The Fund IDatal object rep a collection of Fundamentalltem objects.
Example

protected override void Execute() {
// Show the list of the fundamental data item "assets"

const char tab = '\u0009';

string item = "assets";

IList<FundamentalItem> fList = FundamentalDataltems (item);
ClearDebug () ;

PrintDebug (Bars.Symbol + tab + "Item Count: " + fList.Count);

P Debug ("FY" + tab + "FQ" + tab + "Bar" + tab + "Date " + tab + "Value" + tab + "FormatValue");
foreach (Fundamentalltem fi in fList)
{
PrintDebug (fi.GetDetail ("fiscal year") + tab

+ fi.GetDetail("current quarter") + tab

+ fi.Bar.ToString() + tab

+ fi.Date.ToShortDateString() + tab

+

+

fi.Value.ToS ng ("$#,0.00")
tab + fi.Formatvalue().Replace("\n", " "));

Wealth-Lab 7:

FundamentalDataSeries

DataSeries FundamentalDataSeries(string itemName);

DataSeries FundamentalDataSeries(string itemName, int offset);

DataSeries FundamentalDataSeries(string itemName, int aggregate, int offset);

DataSeries FundamentalDataSeries(string itemName, int aggregate, bool average, int offset);

DataSeries FundamentalDataSeries(string symbol, string itemName);

DataSeries FundamentalDataSeries(string symbol, string itemName, int aggregate, bool average, int offset);

Returns a DataSeries that represents the fundamental data for the specified "fundamental itemName". To access symbol-specific fundamental data without calling SetContext, use one of the last two overload signatures to pass the stock symbol.
The individual fundamental data items are synchronized to the Bars object that the Strategy is currently operating on, and the fundamental data values become the values of the resulting DataSeries. Bars that do not contain any fundamental data
items at their specific date will carry over the value of the previous, most recent fundamental data item. The resulting DataSeries can be plotted on the chart and manipulated as any other normal DataSeries.

Aggregate, average, and offset parameters perform those operations on the itemName Fundamental DataSeries in the order in which they appear in the p list. For example, a Fund | DataSeries will first be aggregated by the number
of integer aggregate periods specified. Then, if average is true, the average of the aggregate series is returned. Finally, the series is offset forward in time by the number of offset periods, where the period depends on the specified itemName.
(Generally, the period is quarterly for corporate fundamental items.) By offsetting, it's easy to determine quarter-over-quarter or year-over-year changes.

Remarks

o See the documentation for the DataSeries object for more information about its properties and methods.
e See the Fundamental Data Guide under the Help menu for a list of fundamental data itemNames available.
e Use 0 or a positive number for aggregate and offset parameters.

Example

protected override void Execute() {
// 55/34 Breakout strategy with an asset twist

ChartPane fundPane = CreatePane (40, true, false);
// Preferred plot method for Fundamental data items
PlotFundamentalItems (fundPane, "assets", Color.Green, WealthLab.LineStyle.Invisible, 1);

// Plot "assets" in a time series
DataSeries assets = FundamentalDataSeries("assets");
PlotSeries (fundPane, assets, Color.Black, WealthLab.LineStyle.Solid, 1);

// Delay highest and lowest series by 1 bar to check Closing crossovers/unders
DataSeries highest = Highest.Series (High, 55) >> 1;
DataSeries lowest = Lowest.Series(Low, 34) >> 1;

PlotSeries (PricePane, highest, Color.Green, WealthLab.LineStyle.Dashed, 1);
PlotSeries (PricePane, lowest, Color.Red, WealthLab.LineStyle.Dashed, 1);

for (int bar = 20; bar < Bars.Count; bar++)
{
if (IsLastPositionActive) {
// exit if assets drop below $50M
if (CrossUnder (bar, assets, 50000d))
SellAtMarket (bar + 1, LastPosition, "assets < $50M");
else if (CrossUnder (bar, Close, lowest))
SellAtMarket (bar + 1, LastPosition, "lowest 34");
}
else {
// Trade this instrument only if assets are over $50M
if (assets[bar] > 50000d)
if (CrossOver(bar, Close, highest))
BuyAtMarket (bar + 1);

Wealth-Lab 7:

FundamentalDataSeriesAnnual

DataSeries FundamentalDataSeriesAnnual (string itemName, int offset);
DataSeries FundamentalDataSeriesAnnual (string symbol, string itemName, int offset);

Returns a DataSeries that sums the 4 quarters of the Fiscal Year. This function is used in the ratio rules that are based on annual growth rates.

Remarks

o Known issue: FundamentalDataSeriesAnnual overload with symbol name ignores the symbol parameter, executing on the current (primary) Bars.
o Workaround: Wrap the call to FundamentalDataSeriesAnnual(symbol...) in SetContext/RestoreContext.
o Known issue: FundamentalDataSeriesAnnual may return zero if the most recently reported fiscal quarter is FQ4.

o Workarounds: Call this function in place of FundamentalDataSeriesAnnual():

public DataSeries FDSeriesAnnual (string symbol, string item, int offset)

{
int bar = Bars.Count - 1;

DataSeries result = FundamentalDataSeriesAnnual (symbol, item, offset);
int fq = (int)GetFundamentalltem (bar, symbol, "fiscal quarter").Value;

while (fgq == 4 && bar > 0)
{

result[bar] = FundamentalDataSeries(symbol, item, 4, false, offset * 4) [bar];
bar--;
fq = (int)GetFundamentalltem(bar, symbol, "fiscal quarter").Value;

}
return result;

}

You can also use the aggregate overload for FundamentalDataSeries to add the last rolling 4 quarters of a fundamental item:

string eps = "earnings per share
//Replace this:

//PlotSeries (FundPane, FundamentalDataSeriesAnnual (eps, 0), Color.DeepPink, LineStyle.Solid, 2);

//With this:

PlotSeries (FundPane, FundamentalDataSeries(eps, 4, false, 0), Color.DeepPink, LineStyle.Solid, 2);

Example

protected override void Execute() {
//Calculate and plot the percentage annual earning growth
DataSeries income = FundamentalDataSeriesAnnual("net income", 0);
DataSeries income2 = FundamentalDataSeriesAnnual ("net income", 1);
DataSeries EG = 100 * (income - income2) / DataSeries.Abs (income2);

// Plot the annualized income
ChartPane annuallncomePane = CreatePane (40, true, true);
PlotSeries(annualIncomePane, income, Color.Blue, WealthLab.LineStyle.Solid,

// Plot the earnings growth

EG.Description = "Annual Earnings Growth %";

ChartPane egPane = CreatePane (40, true, true);

PlotSeries (egPane, EG, Color.Green, WealthLab.LineStyle.Histogram, 2);

Wealth-Lab 7:

GetFundamentalltem

Funda alltem GetFund 111 (int bar, string symbol, string itemName);

Returns the Fundamentalltem object for itemName that corresponds to the specified bar and symbol.

Remarks

e To avoid runtime errors, test for a null object before using the result.
e A Fundamentalltem "off the chart" can be returned, and in this case the its Bar property will be set to -1.

2);

Example

protected override void Execute() {
int bar = Bars.Count - 1;
FundamentalItem fi = GetFundamentalItem(bar, Bars.Symbol, "assets");
if (fi != null)
DrawLabel (PricePane, "Current assets: " + fi.Value.ToString("$#,0") + "
else
DrawlLabel (PricePane, "Current assets: not available", Color.Blue);

Wealth-Lab 7:

GetNextFundamentalltem

Fundamentalltem GetNextFundamentalltem (int bar, string symbol, string itemName);

Returns the Fundamentalltem object for itemName following the one that corresponds to the specified bar and symbol.
Remarks

e To avoid runtime errors, test for a null object before using the result.
o A Fundamentalltem "off the chart" can be returned, and in this case the its Bar property will be set to -1.

(millions)", Color.Blue);

Example

protected override void Execute() {

int bar = 0;
Fundamentalltem fi = GetNextFundamen
if (fi != null)

1lItem(bar, Bars.Symbol, "assets");

DrawLabel (PricePane, "first assets report in chart range " + fi.Date.ToShortDateString() + ": " + fi.Value.ToString("$#,0")

else
DrawLabel (PricePane, "assets: not available", Color.Blue);

+

(millions)",

Color.Blue);

EventDataPoint
Wealth-Lab 7:

EventDataPoint
Fundamentalltem Object
The Fundamentalltem object represents a single instance of a fundamental data point.

e.g. bars.IndexOf(edp.Date, false)
Wealth-Lab 7: EventDataPoint >

Members
Bar Property
int Bar
Returns the bar number of the chart to which the Fundamentalltem is synchronized.
Example (see FundamentalDataltems)

Date
Wealth-Lab 7: EventDataPoint >

Members
Date Property
DateTime Date
Returns the report Date corresponding to the Fundamentalltem.
Example (see FundamentalDataltems)

Text

Wealth-Lab 7: EventDataPoint >
Members

FormatValue Method

string FormatValue

Returns a string containing a summary of the Fundamentalltem's data.
Example (see FundamentalDataltems)

Details

Wealth-Lab 7: EventDataPoint >
Members

GetDetail Method
string GetDetail(string detailName);

Returns a string value of the specified detailName. This feature depends on its implementation in fundamental data providers. Valid detailNames for the various fundamental types can be found in the
online user guide of fundamental providers in the Wealth-Lab Wiki at:

https://www2.wealth-lab.com/WL5WIKI/CommunityProvidersMain.ashx

Example (see FundamentalDataltems)

Example

protected override void Execute(){// Install MS123 Fundamental/News providers library and update fundamental data before using.
// Illustrates the usage of GetDetail using the fundamental data item "analyst rating".

const char tab = '\u0009';
string item = "analyst rating";
IList<FundamentallItem> fList = FundamentalDataltems (item) ;
ClearDebug () ;
PrintDebug (Bars.Symbol + tab + "Item Count: " + fList.Count);
PrintDebug ("Date " + tab + "Analyst");
foreach (FundamentallItem fi in fList)
{
PrintDebug (

fi.Date.ToShortDateString() + tab +

fi.GetDetail ("firm") + tab +

fi.GetDetail ("from") + tab +

fi.GetDetail ("to") + tab);

Name
ItemName

Wealth-Lab 7: EventDataPoint >
Members

Name Property
string Name

Returns a string containing the itemName of the Fundamentalltem.

Value

Wealth-Lab 7: EventDataPoint >
Members

Value Property
double Value

Returns a unit-less floating point value associated with the Fundamentalltem. (Most Fundamentalltem values are expressed in millions.)

Example (see FundamentalDataltems)

Wealth-Lab 7:

MarketInfo Class

The MarketInfo class represents a single market, including its open and closing times, the time zone it trades in, and its holidays and days that have special open and close times.

GetHours
MarketHours.CloseTime

Wealth-Lab 7:
MarketDetails

CloseTimeNative Property

DateTime CloseTimeNative

Return the time that the market typically closes, in its native time zone.
Example (see SpecialHours)

Wealth-Lab 7:

Description Property
string Description
Return a brief description of the market.

Holidays

Wealth-Lab 7:
MarketDetails

Holidays Property
List<DateTime> Holidays

Return a list of DateTime objects that represent the market's holidays; days that it does not trade.

Example

protected override void Execute() {

char tab = '"\t';
PrintDebug("Total Holiday count: "+ Bars.MarketInfo.Holidays.Count);
PrintDebug("——-——=-—————————————————— "y

PrintDebug("Date" + tab + "Market Name");
foreach (DateTime dt in Bars.MarketInfo.Holidays)
PrintDebug (dt.ToShortDateString() + tab + Bars.MarketInfo.Name.ToString());

Name

Wealth-Lab 7:

MarketDetails
Name Property
string Name

Return the name of the market.

GetHours
MarketHours.OpenTime

Wealth-Lab 7:
MarketDetails
OpenTimeNative Property
DateTime OpenTimeNative
Return the standard time that the market opens for trading, in its native time zone.
Example (see SpecialHours)

GetHours

Wealth-Lab 7:

MarketDetails
SpecialHours Property
List<MarketSpecialHours> SpecialHours

Return a list of MarketSpecialHours objects that represent days where the market has special trading hours. The MarketSpecialHours class contains only three properties, all DateTimes: Date,
OpenTimeNative, and CloseTimeNative.

Example

protected override void Execute() {
char tab = "\t';

PrintDebug("Total Shortened Session count: "+ Bars.MarketInfo.SpecialHours.Count);

PrintDebug("-------—=———————————-———)
PrintDebug("Date" + tab + tab + "Open" + tab + "Close" + tab + "Market Name");
foreach (MarketSpecialHours sh in Bars.MarketInfo.SpecialHours
PrintDebug(sh.Date.ToShortDateString() + tab + sh.OpenTimeNative.ToString("t") + tab +
sh.CloseTimeNative.ToString ("t") + tab + Bars.MarketInfo.Name.ToString());

BaseTimeZone

Wealth-Lab 7:
MarketDetails

TimeZoneName Property
string TimeZoneName

Return the Windows string representing the time zone that the market trades in. For example, for EST, return "Eastern Standard Time".

Wealth-Lab 7:

LinearRegLine
double LinearRegLine(DataSeries series, int barl, int bar2, double predict);

Allows you to perform ad-hoc linear regression analysis on the specified DataSeries. Specify the Start and End bars (bar1 and bar2) for which to calculate the regression line. Then, specify the bar, predict, for
which you want to predict a value. This could be a bar that extends into the future.

Example

protected override void Execute() {
int StBar = 0; int EndBar = 0;
double Diff = 0; double MaxDiff = 0;

for (int bar = 20; bar < Bars.Count; bar++)
{
if (IsLastPositionActive)
{
/* Exit after N days */

Position p = LastPosition;
if (bar+l - p.EntryBar >= 20
SellAtMarket (bar+l, p, "Timed");
}
else

{
BuyAtLimit (bar+l, Close[bar]*0.95);

/* Highlight the regression channel of winning trades */

foreach(Position p in Positions)
{
if(p.NetProfit > 0)
{
StBar = p.EntryBar;
EndBar = p.ExitBar;
if(EndBar == -1)
EndBar = Bars.Count - 1;
double StPnt = LinearRegLine(Close, StBar, EndBar, (double)StBar);
double EnPnt = LinearRegLine(Close, StBar, EndBar, (double)EndBar);
MaxDiff = 0;

for (int bar = StBar; bar <= EndBar; bar++)

{
Diff = Math.Abs(Close[bar] - LinearReglLine(Close, StBar, EndBar, (double)bar));
MaxDiff = Math.Max(Diff, MaxDiff);

double[] rectangle = { StBar, StPnt - MaxDiff, StBar, StPnt + MaxDiff, EndBar, EnPnt + MaxDiff, EndBar, EnPnt - MaxDiff };

DrawPolygon (PricePane, Color.FromArgb(80, Color.LightGreen), Color.FromArgb(80, Color.LightGreen),
LineStyle.Solid, 1, true, rectangle);

Wealth-Lab 7:

LineExtendX

double LineExtendX(double x1, double y1, double x2, double y2, double y);

Extends the line specified by the x1, y1 and x2, y2 parameters, solving for x using the specified y parameter.
Remarks

e The equation used in the solution assumes a linear (not logarithmic) y-scale axis.

Example

protected override void Execute () {
// Determine middle bar between last 2 peaks
int bar = Bars.Count-1;
double rev = 5;

int barl = (int)PeakBar.Value(bar, High, rev, WealthLab.Indicators.PeakTroughMode.Percent);
double pricel = Peak.Value(bar, High, rev, WealthLab.Indicators.PeakTroughMode.Percent);
int bar2 = (int)PeakBar.Value(barl, High, rev, WealthLab.Indicators.PeakTroughMode.Percent);
double price2 = Peak.Value(barl, High, rev, WealthLab.Indicators.PeakTroughMode.Percent);
double price3 = (pricel + price2) / 2;

int bar3 = (int) LineExtendX(barl, pricel, bar2, price2, price3);

SetBarColor (bar3, Color.Red);

if((bar2 > -1) & (barl > -1))
DrawlLine (PricePane, barl, pricel, bar2, price2, Color.Blue, WealthlLab.LineStyle.Solid, 1);

ExtendLine

Wealth-Lab 7: UserStrategyBase > Chart
Rendering

LineExtendY

double LineExtendY (double x1, double y1, double x2, double y2, double x);

Extends the line specified by the x1, y1 and x2, y2 parameters, solving for y using the specified x parameter.
Remarks

e The equation used in the solution assumes a linear (not logarithmic) y-scale axis.
e Use the LineExtendYLog method for logarithmic y-scale axis.

Example

protected override void Execute () {
// Extend recent resistance line to most current bar

int bar = Bars.Count-1;
double rev = 5;

int barl = (int)PeakBar.Value(bar, High, rev, WealthLab.Indicators.PeakTroughMode.Percent);
double pricel = Peak.Value(bar, High, rev, WealthLab.Indicators.PeakTroughMode.Percent);
int bar2 = (int)PeakBar.Value(barl, High, rev, WealthLab.Indicators.PeakTroughMode.Percent);

double price2 = Peak.Value(barl, High, rev, WealthLab.Indicators.PeakTroughMode.Percent);
double price3 = LineExtendY (barl, pricel, bar2, price2, bar);

DrawlLine (PricePane, barl, pricel, bar2, price2, Color.Blue, WealthLab.LineStyle.Solid, 1);
DrawlLine (PricePane, bar2, price2, bar, price3, Color.Red, WealthLab.LineStyle.Solid, 1);

ExtendLine(.., true)

Wealth-Lab 7: UserStrategyBase > Chart
Rendering

LineExtendYLog
double LineExtendY Log(double x1, double y1, double x2, double y2, double x);

Extends the line specified by the x1, y1 and x2, y2 parameters, solving for y using the specified x parameter. A logarithmic y-scale axis is assumed.

Example

protected override void Execute () {
// Extend recent resistance line to most current bar

int bar = Bars.Count-1;
double rev = 5;

int barl = (int)PeakBar.Value(bar, High, rev, WealthLab.Indicators.PeakTroughMode.Percent);
double pricel = Peak.Value(bar, High, rev, WealthLab.Indicators.PeakTroughMode.Percent);
int bar2 = (int)PeakBar.Value(barl, High, rev, WealthLab.Indicators.PeakTroughMode.Percent);

double price2 = Peak.Value(barl, High, rev, WealthLab.Indicators.PeakTroughMode.Percent);
double price3 = LineExtendYLog(barl, pricel, bar2, price2, bar);

DrawlLine (PricePane, barl, pricel, bar2, price2, Color.Blue, WealthLab.LineStyle.Solid, 1);
DrawlLine (PricePane, bar2, price2, bar, price3, Color.Red, WealthLab.LineStyle.Solid, 1);

Wealth-Lab 7:

Options
The Options category contains helper methods you can use for trading options.
Remarks

e Known issue: The OHLC values of synthetic put contracts are incorrect (unlike calls)
e Known issue: If the price of the underlying is above the Put's strike prior to bar 30, then the Put is priced at zero. The opposite is true for calls.

Wealth-Lab 7:

CreateSyntheticOption

Bars CreateSyntheticOption(DateTime startDate, DateTime expiryDate, double strikePrice, bool isCallOption);
Bars CreateSyntheticOption(int asOfBar, int atLeastXDaysTilExpiration, int daysToPlotBeforeCreation, bool isCallOption);

Creates and returns a Bars object for a synthetic option contract of the symbol currently being processed with the specified parameters:

o start date, expiry date, strike price.
e as of bar (creation date), number of calendar days to allow until expiration, number of calendar days to plot before creation date

The boolean parameter isCallOption specifies whether the option will be a call (true) or a put (false) contract. The resulting Bars object's symbol has the following components:
!_symbol_strike_ YYMMDD _optionType, where YYMMDD is the monthly expiry and type is either CALL or PUT.

Remarks

The first overload accepts any valid date for expiryDate

Unless specified by the first overload, monthly contract expiry dates are assumed

The Bars object will be returned in the same data scale as the Bars object that the Strategy is currently operating on.

‘When using the second overload method, the strike for both puts and calls is implicitly derived from the integer part of the closing price on the bar passed to the asOfBar parameter.

Note: Live options trading is not supported by Wealth-Lab. This method returns hypothetical data.

Disclaimer: Backtesting provides a hypothetical calculation of how a security or portfolio of securities, subject to a trading strategy, would have performed over a historical time period. You should
not assume that backtesting of a trading strategy will provide any indication of how your portfolio of securities, or a new portfolio of securities, might perform over time. You should choose your own
trading strategies based on your particular objectives and risk tolerances. Be sure to review your decisions periodically to make sure they are still consistent with your goals. Past performance is no
guarantee of future results.

Example

protected override void Execute() {
ChartPane optionPane = CreatePane (50, true, true);

for (int bar = 30; bar < Bars.Count; bar++)
{
if (IsLastPositionActive)
{
if(CumUp.Value(bar, Close, 1) >=)
{
// Sell the call
Bars contract = LastPosition.Bars;
SetContext (contract);
SellAtMarket (bar+1l, LastPosition, "Sell call");
RestoreContext () ;

else
{
if (CumDown.Value(bar, Close, 1) >= 4)
{
// Buy the call contract that has at least 30 days to expiry.
Bars contract = CreateSyntheticOption(bar, 30, 30, true);
SetContext (contract);
BuyAtMarket (bar+1l, "Buy call");
RestoreContext () ;
// Plot it if we haven't done so already
Color ¢ = Color.FromArgb (255, 128, 128);
PlotSymbol (optionPane, contract, c, c);
}
}
}
}
}
}
Wealth-Lab 7:
IsOptionExpiryDate

bool IsOptionExpiryDate(int bar);
bool IsOptionExpiryDate(DateTime dt);

Returns true if the specified bar falls on an options expiration date. Options expiration dates typically fall on the third Friday of every month. If that particular Friday falls on a holiday that the market
is closed on, the following market day is the options expiration date.

Example

protected override void Execute() {

// Annotate Option Expiry Dates on the Chart

for (int bar = 1; bar < Bars.Count; bar++)

{
if (IsOptionExpiryDate(bar))

{
DrawCircle(PricePane, 4, bar, Open[bar], Color.Navy, Color.Navy, WealthLab.LineStyle.Solid, 1, false);

DrawCircle(PricePane, 4, bar, Close[bar], Color.Blue, Color.Blue, WealthLab.LineStyle.Solid, 1, true);

Wealth-Lab 7:

NextOptionExpiryDate

DateTime NextOptionExpiryDate(int bar);
DateTime NextOptionExpiryDate(DateTime dt);

Returns DateTime of the closest options expiration date as of the specified bar. Options expiration dates typically fall on the third Friday of every month. If that particular Friday falls on a holiday
that the market is closed on, the following market day is the options expiration date.

Example

protected override void Execute() {// Show next option expiration date
DateTime nextExpiry = NextOptionExpiryDate (Bars.Count-1);
DrawLabel (PricePane, "Next options expiration date falls on " + nextExpiry.Date.ToShortDateString());

Wealth-Lab 7:

Position Management

The Position Management category contains methods you can use to access and manipulate Positions that have been created by the Strategy.

OpenPositions
Wealth-Lab 7: UserStrategyBase >
Positions

ActivePositions Property
IList<Position> ActivePositions

Returns the number of Positions that are currently still active. Use the Positions property to access the collection of actual Positions, and check the Active property of each Position to determine if it is
active or not.

Example

protected override void Execute () {
ChartPane RSIPane = CreatePane(50, true, true);
PlotSeriesOscillator (RSIPane, RSI.Series(Close, 20), 70, 30,
Color.Red, Color.Blue, Color.MidnightBlue, WealthLab.LineStyle.Dashed, 1);

for (int bar = 60; bar < Bars.Count; bar++)

{
if (CrossUnder(bar, RSI.Series(Close, 20), 30))

{
// Here we limit the system to 3 active Positions max
if (ActivePositions.Count < 3)
BuyAtMarket (bar+l);

if ((ActivePositions.Count > 0) && CrossOver(bar, RSI.Series(Close, 20), 50))
{
// Let's work directly with the list of active positions, introduced in WL5
for(int p = ActivePositions.Count - 1; p > -1 ; p--)
SellAtMarket (bar+l, ActivePositions[p]):

Alert List< Transaction > =>
Backtester.Orders

Wealth-Lab 7: Transaction

Alerts Property
IList<Alert> Alerts

Returns a list of Alerts objects that represent all of the alerts that have been triggered by the Strategy so far. Use the Count proprety of the Alerts list to determine how many Alerts are in the list.
Access the individual Alerts via the [] indexer.

Remarks

e Sece the Alert object section for information on the Alert object's properties and methods.

Example

protected override void Execute() {
// Alert generating code
for (int bar = 3; bar < Bars.Count; bar++)
{
if (!IsLastPositionActive)
{
// Two consecutive lower closes
if (CumDown.Series (Close, 1) [bar] >= 2)
BuyAtLimit (bar+l, Bars.High[bar], "Consecutive close lower");
} else
if (IsLastPositionActive)
{
SellAtMarket (bar+l, LastPosition, "Exit next day"):

// Alert properties
if(Alerts.Count > 0)
{
for(int i = 0; i < Alerts.Count; i++)
{
WealthLab.Alert a = Alerts[i];

PrintDebug("Account: " + a.Account); // blank string

PrintDebug("AlertDate: " + a.AlertDate);

PrintDebug("AlertType: " + a.AlertType);

PrintDebug("BarInterval: " + a.BarInterval);

PrintDebug("BasisPrice: " + a.BasisPrice);

PrintDebug("OrderType: " + a.OrderType);

PrintDebug("Last close: " + a.Bars.Close[Bars.Count-1]); // Access Bars object
PrintDebug("PositionType: " + a.PositionType);

PrintDebug("Price: " + a.Price);

PrintDebug("RiskStopLevel: " + a.RiskStopLevel);
PrintDebug("Symbol: " + a.Symbol);
PrintDebug("Scale: " + a.Scale);
PrintDebug("Shares: " + a.Shares);
PrintDebug("SignalName: " + a.SignalName);
try
{
PrintDebug("Position: " + a.Position);
}
catch

{

PrintDebug("Position: entry");

Wealth-Lab 7:

ClearPositions
void ClearPositions();
Clears all of the trading system Positions that have been generated so far by the Strategy.
Remarks
e In Multi-Symbol Backtest mode, the ClearPositions method clear trades for all symbols in a DataSet. On the Trades list, only the last symbol's trades are left.

It is working by design of the new Wealth-Lab NET, where all of the positions are stored in one list. That's why ClearPositions clears them all and does not work as expected in Multi-
Symbol Backtest mode.

Example

protected override void Execute() {
// Calculate the win/loss ratio of the system taking all trades.
// Then re-run the system, but only take trades when the prior
// win/loss ratio was above 50%. }
int Winners, Trades;
ChartPane WinLossPane = CreatePane(50, false, true);
ChartPane CMOPane = CreatePane(40, true, true);
PlotSeries(CMOPane, CMO.Series(Close, 20), Color.Blue, WealthLab.LineStyle.Solid, 2);
SetPaneMinMax (WinLossPane, 0, 100);
DataSeries WinLoss = new DataSeries(Bars, "WinLoss");
for (int bar = 60; bar < Bars.Count; bar++)
{
Winners = 0;
Trades = 0;
foreach(Position p in Positions)
if (!p.Active)
{
Trades++;
if (p.NetProfit > 0)
Winners++;
}
if (Trades > 0)
{
WinLoss[bar] = Winners * 100 / Trades;
}
if (CrossOver(bar, CMO.Series(Close, 20), -40))
BuyAtMarket (bar+l, "CMO"); else
if (CrossUnder(bar, CMO.Series(Close, 20), 40))
SellAtMarket (bar+l, Position.AllPositions, "CMO");
}
// Plot the Win/Loss Ratio
PlotSeries(WinLossPane, WinLoss, Color.Green, WealthLab.LineStyle.Histogram, 5);
DrawLabel (WinLossPane, "Win/Loss Ratio", Color.Green);
// Clear the trades
ClearPositions{();
// Execute the system again, but only take the trade if the win/loss ratio was above 50
for (int bar = 60; bar < Bars.Count; bar++)
{
if (CrossOver(bar, CMO.Series(Close, 20), =40))
{
if (WinLoss[bar] > 50)
BuyAtMarket (bar+1l, "CMO");
}
else if (CrossUnder (bar, CMO.Series(Close, 20), 40))
SellAtMarket (bar+l, Position.AllPositions, "CMO");

HasOpenPosition
LastPosition?.IsOpen

Wealth-Lab 7: UserStrategyBase >
Positions

IsLastPositionActive Property

bool IsLastPositionActive

Indicates whether the most recently established Position (if any) is active or closed. If there were no Positions created yet the property returns false.

Example

protected override void Execute() {
for (int bar = 20; bar < Bars.Count; bar++)
{
if (IsLastPositionActive)
{
double entryPrice = LastPosition.EntryPrice;
//code your exit rules here
SellAtStop(bar, LastActivePosition, entryPrice*0.8, "20% stop loss");
SellAtLimit (bar, LastActivePosition, entryPrice*1.07, "7% profit target");
}
else
{
if (CrossOver(bar, RSI.Series(((High+Low)/2), 40), 60))
BuyAtMarket (bar+1l, "Buy Strength");

Wealth-Lab 7:

LastActivePosition Property

Position LastActivePosition

Returns the most recently created Position object that is still active (has not yet been sold or covered). If there are no open Positions, LastActivePosition returns null.
Remarks

o See the documentation for the Position object for more information on its properties and methods.

Example

protected override void Execute() {
int period = 14;
int oversoldLevel = 30;
int overboughtLevel = 70;
DataSeries rsi = RSI.Series(Close, period);

//Trading system loop
for (int bar = rsi.FirstValidValue; bar < Bars.Count; bar++)
{
if (LastActivePosition == null
{
//Buy when RSI crosses above oversold level
if(CrossOver(bar, rsi, oversoldLevel))
BuyAtMarket (bar+l, "RSI Oversold");
} else
{
// Sell when it crosses below oversold level
if(CrossUnder(bar, rsi, overboughtLevel))
SellAtMarket (bar+l, LastActivePosition);

LastPosition

Wealth-Lab 7: UserStrategyBase >
Positions

LastPosition Property

Position LastPosition

Returns the most recently created Position object. If there were no Positions created yet, the property returns null.
Remarks

o See the Position object documentation for information about its properties and methods.

Example

protected override void Execute () {
PlotSeries(PricePane, SMA.Series(Close, 20), Color.Red, WealthLab.LineStyle.Solid, 1);
PlotSeries(PricePane, SMA.Series(Close, 10), Color.Blue, WealthLab.LineStyle.Solid, 1);
for (int bar = 20; bar < Bars.Count; bar++)
{
if (CrossOver(bar, SMA.Series(Close, 10), SMA.Series(Close, 20)))
BuyAtMarket (bar+l); else
if (CrossOver(bar, SMA.Series(Close, 20), SMA.Series(Close, 10)))
SellAtMarket (bar+l, LastPosition);

Wealth-Lab 7:

MarketPosition Property

double MarketPosition

Returns the net number of shares that the Strategy has in open Positions. Long Positions add their shares to this value, and short Positions subtract their shares.

Remarks

o In portfolio testing mode, Strategies are pre-executed using a 1 share per Position sizing strategy, then position sizing is applied after the fact. For this reason, MarketPosition will always
count a Position's shares as 1 when testing in this mode.

Example

protected override void Execute () {
DataSeries hMA = WMA.Series(Close, 30);
DataSeries mp = new DataSeries(Bars, "Market Position");

for (int bar = hMA.FirstvValidvValue; bar < Bars.Count; bar++)

{
// Record the number of shares in open positions at each bar as a Data Series.

mp[bar] = MarketPosition;

// Buy on a crossover of a 30-period weighted moving average
// Hold up to 5 positions
if(CrossOver(bar, Close, hMA[bar-1]))
if (ActivePositions.Count < 5)
BuyAtMarket (bar + 1);

// Sell all positions on a crossunder of a 30-period WMA
if(CrossUnder(bar, Close, hMA[bar-1]))
foreach (Position p in Positions)
if (p.Active)
SellAtMarket (bar+l, p);

ChartPane ProfitPane = CreatePane(30, true, true);
PlotSeries(ProfitPane, mp, Color.DarkGreen, WealthLab.LineStyle.Histogram, 1); //'Open Profit'
PlotSeries(PricePane, hMA, Color.Blue, WealthLab.LineStyle.Solid, 2);

GetPositions
Wealth-Lab 7: UserStrategyBase >

Positions
Positions Property

IList<Position> Positions

Returns the Positions that have been established to date by the Strategy (via BuyAtMarket, ShortAtMarket, etc.) Each item in this list is a Position object that represents either a long or a short
position.

Remarks

e Use Positions.Count property to determine how many Positions are in the list.
e See the documentation for the Position object to learn about its properties and methods.

Example

protected override void Execute () {
int lastBarBought = 0;

//Trading system loop
for (int bar = 41; bar < Bars.Count; bar++)

{
// Build up a position buying 40-period High breakouts
if((LastActivePosition != null && LastActivePosition.EntryPrice > Bars.Close[bar]) || LastActivePosition == null)
if(bar >= lastBarBought + 9)

{
if (BuyAtStop(bar+l, Highest.Series(High, 40) [bar], "Breakout") != null)

lastBarBought = bar+1l;

// Exit positions
foreach(Position p in Positions)
if (p.Active)
SellAtStop(bar+l, p, Lowest.Series(Low, 20) [bar], "Breakdown");

Wealth-Lab 7:

SplitPosition
Position SplitPosition(Position position, double percentToRetain);

Splits a single Position into two Positions, allowing you to effectively scale out of a single Position using more than one exit. The position parameter contains the Position object that you wish to
split. The percentToRetain parameter contains the percentage of shares that you wish to remain in the original Position object. SplitPosition returns a new Position object that contains the remaining
shares. This new Position object is also added to the end of the Positions list.

Remarks

e Problem: Having split a Position into two with SplitPosition, the following properties incorrectly report 0 or NaN for the first part of the splitted Position if Strategy is run in a Portfolio
Simulation mode: MFEAsOfBarPercent, MFEAsOfBar, MAEAsOfBarPercent, MAEAsOfBar, NetProfitAsOfBarPercent, NetProfitAsOfBar .

e Partial workaround: Switch to a Raw Profit position sizing mode.

e Problem: in Portfolio Simulation Mode, expect that either all or none of the Positions resulting from SplitPosition will be rejected according to the amount of cash available on the entry bar.
While building the equity curve, Wealth-Lab treats each split Position as a separate Position competing for cash, and, if Position. Priority is random each Position has a random chance of
being selected or rejected in a high-exposure MSB Portfolio Simulation.

e Partial workaround: To help reduce the frequency (but in no way guarantee) of taking different actions for split Positions, assign the same Priority to the new split Position as the original

after calling SplitPosition (see code snippet below).

Example

protected override void Execute () {
bool soldForProfit = false;

for (int bar = 50; bar < Bars.Count; bar++)
{
if (ActivePositions.Count > 0)
{
// Split the position to protect large gain
if (LastPosition.MFEAsOfBarPercent(bar) > 20)
{
if (!soldForProfit) {

Position p = LastPosition; // Position to split
Position s = SplitPosition(p, 49.99); // The new Position
s.Priority = p.Priority; // Assign the same Priority as the original Position

soldForProfit = SellAtMarket(bar+l, s, "Secure large profit");
}

else {
// Exit the rest on a tight stop
SellAtStop(bar+l, LastActivePosition, Lowest.Series(Low,10) [bar], "the rest");

}
else

{
BuyAtStop(bar+l, Highest.Series(High, 50) [bar], "no-frills breakout");

soldForProfit = false;

Position
Wealth-Lab 7: Position

Position Object
Represents a single Position (trade) that was created by the Strategy. Use the Positions property to access all of the trades that have been created so far at any point in time.
IsOpen

Wealth-Lab 7: Position

Active Property
bool Active

Determines if the Position is still open or not. A position is closed when it is successfully sold (long positions) or covered (short positions).

Example

protected override void Execute() {
DataSeries rsi = RSI.Series(((High+Low)/2), 40);
Position i;

for (int bar = rsi.FirstValidvalue; bar < Bars.Count; bar++)
{
if (

sover(bar, rsi, 35))
BuyAtLimit (bar+l, Highlbar]

if (CrossUnder (bar, rsi, 70))

{

// Cycle through open p ions

foreach(Position p in Positions)
if (p.Active)
SellAtMarket (bar+l, p);

Wealth-Lab 7:

AutoProfitLevel Property

double AutoProfitLevel

Specifies the initial profit target level (price) of the Position. The value, analogous to RiskStopLevel, s the price at which the same-bar Limit order should be placed. It is valid for any BarScale.
Remarks

* AutoProfitLevel should be set if "same bar exits" wish to be used in real-time trading. It does not have any effect in backtesting.

Example

protected override void Execute() {
stops () 7

int bcml = Bars.Count - 1
DataSeries smal = SMA.Series (Clos:)i

DataSeries sma2 = SMA.Series(Close, 20);

lotSeries (PricePane, smal, Color.Green, LineStyle.Solid, 1);
Pane, sma2, Color.Red, LineStyle.Solid, 1);

PlotSeries (Pri

for (int bar = Bars.FirstActualBar + 20; bar < Bars.Count; bar++)
{
if (IsLastPositionhActive)
{
Position p = LastPosition;
SellAtLimit (bar+l, p, p.AutoProfitlLevel * 1.01);

}
else if (C
{

ossOver (bar, smal, sma2))

AutoProfitLevel = Bars.High[barl;
// also use same-bar exit for backtesting
if (BuyAtMarket (bar+l) null & bar < beml)
SellAtLimit (bar + 1, LastPosition, LastPosition.AutoPro

tLevel, "same-bar exit");

Bars

Wealth-Lab 7: Position
Bars Property
Bars Bars
Returns the Bars object that the Position was traded against. Certain Strategies (such as pairs trading or symbol rotation) can trade on multiple symbols. The Bars property allows you to determine which symbol a particular Position was established on.
Remarks

« See the Bars object reference for more information about its properties and events.
BarsHeld
Wealth-Lab 7: Position

BarsHeld Property
int BarsHeld

Returns the number of bars that the Position was held. If the Position is still active, BarsHeld returns the total number of bars held as of the last bar of the chart. The BarsHeld property is primarily intended for use by Performance Visualizers, not Strategies.

Example

protected override void Execute () {
// Return the total number of bar

held as of the last bar of the chart

for (int bar = 20; bar < Bars.Count; bar++)
{
if (IsLastPositionActive)

{

if(bar LastPosition.Bars.Count-1)

DrawLabel(PricePane, "Bars held: " + LastPosition.BarsHeld , Color.Blue);
}
else

AtMarket (bar+l);

BasisPrice
Wealth-Lab 7: Position

BasisPrice Property

double BasisPrice

Returns the Position's "basis price”. This is the price that was used to establish how many shares the Position should be sized to. For market orders, the basis price is typically the closing price of the previous bar. The actual entry price can of course differ because the market may open above or below the
previous close. In certain situation (unless a margin factor is applied to simulations), this difference can cause a trade to not be executed (even a market order) due to insufficient capital. For limit orders, the basis price is always the limit price of the order. For stop orders, the basis price is always the stop price

specified.

Example

protected override void Execute () {
// Display differences between Basis Price and Entry Price

for (int bar = 4; bar < Bars.Count; bar++)
{
if (IslastPositionActive)

{

if(bar == LastPosition.Bars.Count-1)
DrawLabel (PricePane, (LastPosition.EntryPrice - LastPosition.BasisPrice).ToString(), Color.Black) ;

SellAtStop(bar+l, LastPosition, Lowest.Series(Low, 3)[bar]);

Stop(bar+l, Highest.Series(High, 3)[bar]);

EntryBar
Wealth-Lab 7: Position
EntryBar Property
int EntryBar
Returns the bar number that the Position was entered on.
Remarks

« (Doesn'taffect WealthScript Strategy coding). In development of PosSizers and Performance Visualizers, checking for EntryBar or ExitBar in portfolio simulations may produce unexpected results because the different historical DataSets aren't synchronized when backtesting.

Solution: check for the date with EntryDate/ExitDate rather than the bar number:

// Fails:

//if (Positions[n].EntryBar == bar + 1)

// Workaround:

if (Positions[n].EntryDate == bars.Date[bar + 1].Date)

Example

protected override void Execute() {
for (int bar = 20; bar < Bars.Count; bar++)
{

if (!IsLastP
{

ositionActive)

if (StochK.Series(Bars, 20)([bar] > 70)
\tMarket (bar+l, "Stoch");

Sell on 10th day
if (bar+l - LastPosition.EntryBar == 10)
SellAtClose (bar, LastPosition, "10 day");

EntryCommission
Wealth-Lab 7: Position

EntryCommission Property

double EntryCommission

Returns the commission value that was applied to the entry trade for the Position.
Remarks

« EntryCommission is not available during Strategy execution, and is only available to Performance Visualizers, Commission structures and PosSizers that execute after position sizing has been applied.
* When "Apply Commissions to simulated trades” in Wealth-Lab's Preferences > Commissions is unchecked, both EntryCommission and ExitCommission become available to set and use in WealthScript Strategy.

EntryDate
Wealth-Lab 7: Position
EntryDate Property

DateTime EntryDate

Returns the date/time that the Position was entered on.

Example

protected override void Execute () {
// Dumps entry dates to Debug window
// Run this on Daily
if (Bars.IsIntraday != true)
{
for (int bar = 50; bar < Bars.Count; bar++)
{
if (IslastPositionActive)
{
PrintDebug(LastPosition.EntryDate);
// sell after 10 days
if (bar+l Bars.ConvertDateToBar (LastPosition.EntryDate, false) + 10)
SellAtMarket (bar+l, LastPosition, "10 day");

if (StochK.Series(Bars, 20)[bar] > 70)
BuyAtMarket (bar+l, "Stoch");

EntryOrderType
Wealth-Lab 7: Position

EntryOrderType Property

OrderType EntryOrderType

Returns the type of order that was used to establish the Position. Possible values are:
« OrderTypeMarket
« OrderType.Limit

« OrderType.Stop
« OrderType.AtClose

Example

protected override void Execute() {
for (int bar = 20; bar < Bars.Count; bar++)
{
double atr = ATR.Series(Bars,10) [bar];

if (IsLastPositionhActive)
{
string signal = LastPosition.EntrySignal;

itching of exits depending on entry order type
OrderType.Limit)
, Lowest.Series(Low,40) [bar], "Breakdown");

// simple s
if (LastPosition.EntryOrderType
SellAtStop(bar+l, LastPosit
else
if(LastPosition.EntryOrderType
SellAtLimit (bar+l, LastP

OrderType.Stop)
Close[bar]+2*atr, "Target");

}
else
{
if (BuyAtLimit(bar+l, Lowest.Series(Low,40)[bar], "Deep down") == null)
BuyAtStop(bar+l, Bars.Close[bar]+atr, "Range");

EntryPrice
Wealth-Lab 7: Position

EntryPrice Property

double EntryPrice

Returns the entry price of the Position.

Example

protected override void Execute() {
// Use an ATR stop based on the entry price

DataSeries smal = SMA.Series (se, 10);
DataSeries sma2 = SMA.Series(Close, 40);
PlotSeries(PricePane, smal, Color.LightCoral, WealthLab.LineStyle.Solid, 1);
PlotSeries(PricePane, sma2, Color.DarkGreen, WealthLab.LineStyle.Solid, 1);

for (int bar = sma2.FirstValidvalue; bar < Bars.Count; bar++)
{
if (IsLastPositionActive)
{
if (CrossUnder(bar, smal, sma2))
SellAtMarket (bar+l, LastPosition, "SMA");
else
if (Close[bar] < (LastPosition.EntryPrice - ATR.Series(Bars, 10)[bar] * 4))
SellAtMarket (bar+l, LastPosition, "ATR");
1
else
{

if (CrossOver(bar, smal, sma2))
BuyAtMarket (bar+1l, "SMA");

EntrySignalName
Wealth-Lab 7: Position

EntrySignal Property
string EntrySignal

Returns the "signal name" that was supplied in the "BuyAfXXX" or "ShortACXXX" method that was used to establish the Position. All "BuyAtXXX" and "ShortAtXXX" methods allow you to specify an optional signalName parameter. The value that you specify there is visible in the trade list, and is also
accessible via the EntrySignal property.

Example

protected override void Execute() {
for (int bar = 40; bar < Bars.Count; bar++)

double atr = ATR.Series(Bars, 10) [bar];
if (IslastPositionActive)
{

string signal = LastPosition.EntrySignal;

// simple switching of exits depending on entry signal

if (signal "Highest")

SellatStop(bar+l, LastPosition, Lowest.Series(Low,40)[bar], "Breakdown");
else

if(signal == "Range")

SellAtLimit(bar+l, LastPosition, Close[bar]+2*atr, "Target");

else
{

if (BuyAtStop(bar+l, Highest.Series(High,40)[bar], "Highest")
op(bar+l, Bars.Close[bar]+atr, "Range");

null)

ExitBar
Wealth-Lab 7: Position

ExitBar Property

int ExitBar

Returns the bar number that the Position was exited (closed) on. If the Position is still active, ExitBar returns -1.
Remarks

o (Doesn't affect WealthScript Strategy coding). In development of PosSizers and Performance Visualizers, checking for EntryBar or ExitBar in portfolio simulations may produce unexpected results because the different historical DataSets aren't synchronized when backtesting.

Solution: check for the date with EntryDate/ExitDate rather than the bar number:

// Fails:
//if (Positions[n].ExitBar =
// Workaround:

if sitions[n].ExitDate

bar + 1)

bars.Date[bar + 1].Date)

Example

using System;

using System.Text;
using System.Drawing;
using WealthLab;

namespace WealthLab.Strategies

public class ExitBar : WealthScript
{

// Display the shortest and the longest holding time of closed positions
protected override void Execute()
{
for (int bar = 30; bar < Bars.Count; bar++)
{
if (!IsLastPositionActive)
{
if (CrossUnder(bar, Indicators.RSI.Series(Close, 10), 20))
tMarket (bar+l);

CrossOver (bar, Indicators.RSI.Series(Close, 10), 60))
1llatMarket(bar+l, LastPosition);

int LowBar =
int HighBar
int BarsHeld;

foreach (Position p in Positions)
{

if(!p.Active)

{

BarsHeld = p.ExitBar - p.EntryBar;

if(BarsHeld > HighBar)
HighBar = BarsHeld;

if ((BarsHeld < LowBar) | (LowBar <= 0))
LowBar = BarsHeld;

DrawLabel(PricePane, "Longest Holding Time: " + HighBar, Color.Black);
DrawLabel (PricePane, "Shortest Holding Time: " + LowBar, Color.Black);

ExitCommission
Wealth-Lab 7: Position

ExitCommission Property

double ExitCommission

Returns the commission value that was applied to the exit trade for the Position. If the Position is still active, ExitCommission returns 0.

Remarks

o ExitCommission is not available during Strategy execution, and is only available to Performance Visualizers, Commission structures and PosSizers that execute after position sizing has been applied.
o When "Apply Commissions to simulated trades” in Wealth-Lab's Preferences > Commissions is unchecked, both EntryCommission and ExitCommission become available to set and use in WealthScript Strategy.

ExitDate
Wealth-Lab 7: Position

ExitDate Property

DateTime ExitDate

Returns the date/time that the Position was exited (closed) on. If the Position is still active, ExitDate returns DateTime.MinValue.

Example

protected override void Execute() {
for (int bar = 41; bar < Bars.Count; bar++)

{

if(IsLastPositionActive)

{

if (bar == Bars.Count-1)
DrawLabel(PricePane, "Holding a position...", Color.LightBlue);

SellAtStop(bar+l, LastPosition, Lowest.Series(Low, 20) [bar], "Breakdown");
}
else
{

// Prints how much time passed since last exit from LastPosition

if((bar == Bars.Count-1) & (Positions.Count > 0))

{

int x = DateTime.Compare (Bars.Date[bar], LastPosition.ExitDate);
if(x > 0)

{

DateTime exitDate = LastPosition.ExitDate;
DateTime today = Bars.Date[bar];
TimeSpan sinceExit = today.Subtract(exitDate);

DrawLabel (PricePane, "Time since last exit: " + sinceExit.Days + " days, " + sinceExit.Hours + " hours,

bar+l, Highest.Series(High, 40)[bar], "Breakout");

ExitOrderType
Wealth-Lab 7: Position

ExitOrderType Property

OrderType ExitOrderType

Returns the type of order that was used to exit (close) the Position. Possible values are:

OrderType. Market
OrderType.Limit
OrderType.Stop
OrderType.AtClose

" + sinceExit.Minutes + " minutes,

" + sinceExit.Seconds +

seconds",

Color.Blue

)i

Example

protected override void Execute() {
ClearDebug () ;

for (int bar = 20; bar < Bars.Count; bar++)

double atr = ATR.Series(Bars,10) [bar];
if (IslastPositionActive)

{

if(SellAtSt bar+l, LastPosition, Lowest.Series(Low,40) [bar]))
SellAtLimit (bar+l, LastPosition, Close[bar]+2*atr);
¥
else
{
BuyAtSt bar+l, Highest.Series(High,20)[bar]);:

// Print exit order type statistics

int stop = 0;

int limit =

foreach(Position p in Positions)

if(!p.Active)

if(p.ExitOrderType == OrderType.Stop)

stopt+;
if(p.ExitOrderType == OrderType.Limit)
limit+;
¥
PrintDebug("Exits on stop: " + stop, "Exits at limits: " + limit);

ExitPrice
Wealth-Lab 7: Position

ExitPrice Property

double ExitPrice

Returns

the exit price of the Position. If the Position is still active, ExitPrice returns 0.

Example

using
using
using
using
using
using

System;
System.Collections.Generic;
System.Text;
System.Drawing;

WealthLab;

WealthLab. Indicators;

namespace WealthLab.Strategies

public class MyStrategy : WealthScript

// This procedure reports the entry and exit levels of all trades
void TradeReport ()
{

foreach(Position p in Positions)

{

PrintDebug ("

Entry:" + p.EntryDate + " at " + p.EntryPrice);
PrintDebug("Exi

+ p.ExitDate + " at " + p.ExitPrice);

protected override void Execute ()
{
for (int bar = 20; bar < Bars.Count; bar++)
{
if (IslLastPositionActive)
SellatStop(bar+l, LastPo
else
BuyAtStop(bar+l, Closelbar]+2*ATR.Series (Bars,10) [bar], "Long");

tion, Lowest.Series(Close,20) [bar], "Exit");

}
TradeReport () ;

ExitSignalName
Wealth-Lab 7: Position

ExitSignal Property

siring ExitSignal

Returns the "signal name" that was supplied in the "SelACXXX" or "CoverAtXXX" method that was used to close the Position. All "SelIATXXX" and "CoverAXXX" methods allow you to specify an optional signalName parameter. The value that you specify there is visible in the trade list, and is also
accessible via the ExitSignal property. If the Position is still active, ExitSignal returns a blank string.

Example

protected override void Execute() {
// Marks the position exit bar with the exit signal name

for (int bar = 20; bar < Bars.Count; bar++)
{
double atr = ATR.Series(Bars,10) [bar];

if (IslastPositionActive)

{

Position p = Lasthcti sition;

if (SellAtStop(bar+l, LastPosition, Lowest.Series(Low,10)[bar], "Breakdown"))
AnnotateBar (p.ExitSignal.ToString(), bar, false, Color.Red); else

if(SellAtLimit (bar+l, LastPosition, Close(bar]+atr, "Target"))

ateBar (p.ExitSignal.ToString(), bar, true, Color.Blue);

Anno

(bar+l, Highest.Series(High, 20)([bar]);

Wealth-Lab 7:

HighestHighAsOfBar
double HighestHighAsOfBar(int bar);

Returns the highest price registered in the Position, as of the specified bar number.

Example

protected override void Execute() {
for (int bar = 50; bar < Bars.Count; bar++)

if (IsLastPositionActive)

{

Position p = La

SellAtTrailingStop(bar+l, p, p.HighestHighAsOfBar (bar) - 3*ATR.Value(bar, Bars, 14), "3x ATR Stop");
}
else
BuyAtStop(bar+l, Highest.Series(High, 20)([bar]);
}
}
Wealth-Lab 7:
LowestLowAsOfBar

double LowestLowAsOfBar(int bar);

Returns the lowest price registered in the Position, as of the specified bar number.

Example

protected override void Execute() {
for (int bar = 50; bar < Bars.Count; bar++)
{
if (IsLastP
{

Position p =

rerAtTrailing:

p, p.LowestLowAsOfBar (bar) + 3*ATR.Value(bar, Ba 14), "3x ATR Stop");

¥
else
ShortAtStop (bar+l, Lowest.Series(Low, 20)[bar]);

MAE
Wealth-Lab 7: Position
MAE Property
double MAE
Returns the Maximum Adverse Excursion (MAE) that was generated by the Position, with commissions applied. MAE represents the largest intraday loss that the trade experienced during its lifetime. This property is intended for use by Performance Visualizers, and not in Strategies.
Remarks
» MAE is not available during Strategy exccution, and is only available to Performance Visualizers that execute after position sizing has been applied.
MAEAsOfBar
Wealth-Lab 7: Position
MAEAsOfBar
double MAEAsOfBar(int bar);
Returns the Maximum Adverse Excursion (MAE) that was generated by the Position, with commissions applied, as of the specified bar number. MAEAsOfBar represents the largest intraday loss that the trade experienced up to the specified bar.
Remarks
= In portfolio simulation mode, all trades are pre-executed using 1 share per Position, and then position sizing is applied afier the fact. So the MAEAsOfBar property will always be based on 1 share while the Strategy is exccuting.
« The MAEAsOfBar property is always available to Performance Visualizers, which exccute afier the position sizing has been applied.
= Problem: Having split a Position into two with SplitPosition, the following properties incorrectly report 0 or NaN for the first part of the splitted Position if Strategy is run in a Portfolio Simulation mode: MFEAsOfBarPercent, MFEAsOfBar, MAEAsOfBarPercent, MAEAsOfBar,

NetProfitAsOfBarPercent, NetProfitAsOfBar.
o Partial workaround: Switch to a Raw Profit position sizing mode.

Example

protected override void Execute() {
// ord a position's Maximum Adverse Excursion (MAE) at each bar as a Data Series.
// This system buys on a over of a 30-period weighted
// moving average and sells r 20 bars.

cross

int timedExit = 20; // just exit after 20 days
DataSeries hMA = WMA.Series(Close, 30);
DataSeries hMAESer = new DataSeries(Bars, "MAE");

for (int bar = hMA.FirstValidValue; bar < Bars.Count; bar++)

if (IsLastPositionActive)

{

hMAESer[bar] = LastActivePosition.MAEAsOfBar(bar);
if (bar+l - LastPosition.EntryBar >= timedExit)
SellAtMarket (bar+l, LastPosition);

¥
else
{
if(CrossOver(bar, Close, hMA[bar-1]))
BuyAtMarket (bar+l, "Xover");

ChartPane ProfitPane = CreatePane(50, true, true);
ries(ProfitPane, hMAESer, Color.DarkGreen, WealthLab.LineStyle.Histogram,
ries(PricePane, hMA, Color.Blue, WealthLab.LineStyle.Solid, 2);

MAEAsOfBarPercent
Wealth-Lab 7: Position

MAEAsOfBarPercent
double MAEAsOfBarPercent(int bar);

Returns the Maximum Adverse Excursion (MAE) that was gencrated by the Position, with commissions applied, as a percentage, as of the specified bar number. MAEAsOfBarPercent represents the largest intraday percentage loss that the trade experienced up to the specified bar.

Remarks

In portfolio simulation mode, all trades are pre-executed using 1 share per Position, and then position sizing is applied after the fact. So the MAEAsOfBarPercent property will always be based on 1 share while the Strategy is executing.
The MAEAsOfBarPercent property is always available to Performance Visualizers, which execute after the position sizing has been applied.
Problem: Having split a Position into two with SplitPosition, the following properties incorrectly report 0 or NaN for the first part of the splitted Position if Strategy is run in a Portfolio Simulation mode: ~ MFEAsOQfBarPercent, MFEAsOfBar, MAEAsOfBarPercent, MAEAsOfBar,
NetProfitAsOfBarPercent, NetProfitAsOfBar.

o Partial workaround: Switch to a Raw Profit position sizing mode.

Example

protected override void Execute() {
/7 ord a position's Maximum Adverse Excursion (MAE) pe

at each bar as a Data Serie

em buys on a crossover of a 3
ter 20 bars.

period weighted

// moving average and sells a
int timedExit = 20; // just exit after 20 days

DataSeries hMA = WMA.Series(Clc s 30)

DataSeries hMAEPctSer = new DataSeries(Bars, "MAE (Percentage)");

for (int bar = hMA.FirstValidValue; bar < Bars.Count; bart+)
{
if (IslastPositionActive)
{
hMAEPctSer [bar] = LastActivePosition.MAEAsOfBarPercent (bar);
if (bartl - las ition.EntryBar >= timedExit)
SellAtMarket (bar+l, LastPosition);

}
else
{
if(CrossOver(bar, Close, hMA[bar-1]))
BuyAtMarket (bar+l, "Xover");

ChartPane ProfitPane = CreatePane(50, true, true);
eries(ProfitPane, hMAEPctSer, Color.DarkGreen, WealthLab.LineStyle.Histogram, 1);
PlotSeries(PricePane, hMA, Color.Blue, WealthLab.LineStyle.Solid, 2);

MAEPercent
Wealth-Lab 7: Position

MAEPercent Property

double MAEPercent

Returns the Maximum Adverse Excursion (MAE) that was gencrated by the Position, with commissions applicd, as a percentage. MAEPercent represents the largest intraday percentage loss that the trade experienced during its lifetime. This property is intended for use by Performance Visualizers, and not in
Strategies.

Remarks
= MAEPercent is not available during Strategy execution, and is only available to Performance Visualizers that execute after position sizing has been applied.
MFE
Wealth-Lab 7: Position
MFE Property
double MFE
Returns the Maximum Favorable Excursion (MFE) that was generated by the Position, with commissions applied. MFE represents the highest intraday profit that the trade experienced during its lifetime. This property is intended for use by Performance Visualizers, and not in Strategies.
Remarks
* MFE is not available during Strategy execution, and is only available to Performance Visualizers that execute after position sizing has been applied.
MFEAsOfBar
Wealth-Lab 7: Position
MFEAsOfBar
double MFEAsOfBar(int bar);
Returns the Maximum Favorable Excursion (MFE) that was generated by the Position, with commissions applied, as of the specified bar number. MFEAsOfBar represents the highest intraday profit that the trade experienced up to the specified bar.

Remarks

In portfolio simulation mode, all trades are pre-exccuted using 1 share per Position, and then position sizing is applied after the fact. So the MFEAsOfBar property will always be based on 1 share while the Strategy is exccuting.
The MFEAsOfBar property is always available to Performance Visualizers, which execute after the position sizing has been applied.
Problem: Having split a Position into two with SplitPosition, the following properties incorrectly report 0 or NaN for the first part of the splitted Position if Strategy is run in a Portfolio Simulation mode: MFEAsOfBarPercent, MFEAsOfBar, MAEAsOfBarPercent, MAEAsOfBar,
NetProfitAsOfBarPercent, NetProfitAsOfBar.

o Partial workaround: Switch to a Raw Profit position sizing mode.

Example

protected override void Execute() {
// Record a position's Maximum Fav

ite Excursion (MFE) at each bar as a Data Series.
eighted

// This system buys on a crossover of a 30-period
// moving average and sells after 20 bars.

int timedExit = 20; // just exit after 20 days
DataSeries hMA = WMA.Series(Close, 30);
DataSeries hMFESer = new DataSeries(Bars, "MFE");

for (int bar = hMA.FirstValidvalue; bar < Bars.Count; bar++)
{
if (IslastPositionActive)
{
hMFESer (bar] = LastActivePosition.MFEAsOfBar(bar);
if (bar+l - LastPosition.EntryBar >= timedExit)
SellAtMarket (bar+l, LastPosition);

if(Cro er(bar, Close, hMA(bar-1]))
BuyAtMarket (bar+1, "Xover");

ChartPane ProfitPane = CreatePane(50, true, true);
tSeries(ProfitPane, hMFESer, Color.DarkGreen, WealthLab.LineStyle.Histogram, 1);
eries(PricePane, hMA, Color.Blue, WealthLab.LineStyle.Solid, 2);

MFEAsOfBarPercent
Wealth-Lab 7: Position

MFEAsOfBarPercent
double MFEAsOfBarPercent(int bar);

Returns the Maximum Favorable Excursion (MFE) that was generated by the Position, with commissions applied, as a percentage, as of the specificd bar number. MFEAsOfBarPercent represents the highest intraday percentage profit that the trade experienced up to the specified bar.

Remarks

o In portfolio simulation mode, all trades are pre-executed using 1 share per Position, and then position sizing is applied after the fact. So the MFEAsOfBarPercent property will always be based on 1 share while the Strategy is executing.
« The MFEAsOfBarPercent property is always available to Performance Visualizers, which execute after the position sizing has been applied.
« Problem: Having split a Position into two with SplitPosition, the following properties incorrectly report 0 or NaN for the first part of the splitted Position if Strategy is run in a Portfolio Simulation mode: ~ MFEAsOfBarPercent, MFEAsOfBar, MAEAsOfBarPercent, MAEAsOfBar,
NetProfitAsOfBarPercent, NetProfitAsOfBar.
o Partial workaround: Switch to a Raw Profit position sizing mode.

Example

protected override void Execute () {

ord a position's Maximum Favorable Excur:
ach bar as a Data Series.

This system buys on a crossover of a 30-period weighted

sion (M

percentage

e and sells after 20 bars.

avera

int timedExit = 20; // just exit after 20 days
DataSeries hMA = WMA.Series(Close, 30);
DataSeries hMFEPctSer = new DataSeries(Bars, "MFE (Percentage)");

for (int bar = hMA.FirstValidvValue; bar < Bars.Count; bar++)
{

if PositionActive)
{
hMFEPctSer [bar] = LastActivePosition.MFEAsOfBarPercent (bar);
if (bar+l - LastPosition.EntryBar >= timedExit)
SellAtMarket (bar+l, LastPosition);
¥
else

ver (bar, Close, hMA[bar-1]))
BuyAtMarket (bar+l, "Xover");

ChartPane ProfitPane = CreatePane(50, true, true);
lotSeries(ProfitPane, hMFEPctSer, Color.DarkGreen, WealthLab.LineStyle.Histogram, 1);
otSeries(PricePane, hMA, Color.Blue, WealthLab.LineStyle.Solid, 2);

MFEPercent
Wealth-Lab 7: Position
MFEPercent Property

double MFEPercent

jon, with commissions applicd, as a percentage. MFEPercent represents the highest intraday percentage profit that the trade expericnced during its lifetime. This property s intended for use by Performance Visualizers, and not

Returns the Maximum Favorable Excursion (MFE) that was generated by the P
in Strategies.

Remarks

« MFEPercent is not available during Strategy exccution, and is only available to Performance Visualizers that exceute afier position sizing has been applied.

Profit
Wealth-Lab 7: Position

NetProfit Property
double NetProfit

Returns the profit that was generated by the Position, excluding commissions. This property is intended for use by Performance Visualizers, and not in Strategies.

Remarks
« In portfolio simulation mode, all trades are pre-executed using 1 share per Position, and then position sizing is applied afier the fact. So the NetProfit property will always be based on 1 share while the Strategy is executing.
o The NetProfit property is always available to Performance Visualizers, which execute after the position sizing has been applied.
ProfitAsOf
Wealth-Lab 7: Position

NetProfitAsOfBar
double NetProfitAsOfBar(int bar);

Returns the profit that was generated by the Position, excluding commissions, as of the specified bar number.

Remarks

In portfolio simulation mode, all trades are pre-exccuted using 1 share per Position, and then position sizing is applied after the fact. So NetProfitAsOfBar will always be based on 1 share while the Strategy is executing.
NetProfitAsOfBar is always available to Performance Visualizers, which exccute after the position sizing has been applied.
Problem: Having split a Position into two with SplitPosition, the following properties incorrectly report 0 or NaN for the first part of the splitted Position if Strategy is run in a Portfolio Simulation mode: MFEAsOfBarPercent, MFEAsOfBar, MAEAsOfBarPercent, MAEAsOfBar,
NetProfitAsOfBarPercent, NetProfitAsOfBar.

o Partial workaround: Switch to a Raw Profit position sizing mode.

Example

protected override void Execute() {
// Record a position's net profit at each bar as a Data
// This system buys on a crossover of a 30-period weighted
// moving average and sells after 20 bars.

int timedExit = 20; // just exit after 20 days
DataSeries hMA = WMA.Series(CL 30)
DataSeries hPftSer = new DataSeries(Bars, "Net Profit");

for (int bar = hMA.FirstValidvalue; bar < Bars.Count; bar++)
{
if (IslastPositionActive)
{
hPftSer(bar] = LastActivePosition.NetProfitAsOfBar (bar);
if (bar+l - LastPosition.EntryBar >= timedExit)
SellAtMarket (bar+l, LastPosition);

er(bar, Close, hMA[bar-1]))
BuyAtMarket (bar+l, "Xover");

ChartPane ProfitPane = CreatePane(50, true, true);
Series(ProfitPane, hPftSer, Color.DarkGreen, WealthLab.LineStyle.Histogram, 1); //'Open Profit'
Series(PricePane, hMA, Color.Blue, WealthLab.LineStyle.Solid, 2);

ProfitPctAsOf
Wealth-Lab 7: Position
NetProfitAsOfBarPercent

double NetProfitAsOfBarPerceni(int bar);

Returns the percentage profit that was generated by the Position, excluding commissions, as of the specified bar number.

Remarks

In portfolio simulation mode, all trades are pre-executed using 1 share per Position, and then position sizing is applied afier the fact. So NetProfitAsOfBarPercent will always be based on 1 share while the Strategy is executing.
NetProfitAsOfBarPercent is always available to Performance Visualizers, which execute after the position sizing has been applied.
Problem: Having split a Position into two with SplitPosition, the following properties incorrectly report 0 or NaN for the first part of the splitted Position if Strategy is run in a Portfolio Simulation mode: MFEAsQfBarPercent, MFEAsQfBar, MAEAsOfBarPercent, MAEAsOfBar,
NetProfitAsOfBarPercent, NetProfitAsOfBar.

o Partial workaround: Switch to a Raw Profit position sizing mode.

Example

protected override void Execute () {

// ord a position's percentage profit at each bar as a Data Series.
system buys on a crossover of a 30-period weighted
20 bars.

ing average and sells

int timedExit = 20; // just exit after 20 da
DataSeries hMA = WMA.Series(Close, 30);
DataSeries hPftPctSer = new DataSeries(Bars, "Net Profit (Percent)");

for (int bar = hMA.FirstValidValue; bar < Bars.Count; bar++)
{
if (IsLastPositionActive)
{
hPftPctSer[bar] = LastActivePosition.NetProfitAsOfBarPercent (bar);
if (bar+l - LastPosition.EntryBar >= timedExit)
SellAtMarket (bar+l, LastPosition);

else

wver (bar, Close, hMA[bar-1]))
BuyAtMarket (bar+1l, "Xover");

ChartPane ProfitPane = CreatePane(50, true, true);
PlotSeries(ProfitPane, hPftPctSer,

Color.DarkGreen, WealthLab.LineStyle.Histogram,)i

//'Open Profit'
eries(PricePane, hMA, Color.Blue, WealthLab.LineStyle.Solid, 2);

ProfitPct
Wealth-Lab 7: Position

NetProfitPercent Property
double NetProfitPercent

Returns the profit that was gencrated by the Position, excluding commissions, as a percentage. This property is intended for use by Performance Visualizers, and not in Strategics.

Remarks

« In portfolio simulation mode, all trades are pre-executed using 1 share per Position, and then position sizing is applied after the fact. So the NetProfitPercent property will always be based on 1 share while the Strategy is executing.
o The NetProfitPercent property is always available to Performance Visualizers, which execute after the position sizing has been applied.
PositionType

Wealth-Lab 7: Position, Transaction

PositionType Property
PositionType PositionType
Returns the type of Position, either long or short. Possible values are:

« PositionType.Long
« PositionType.Short

Example

protected override void Execute () {
for (int bar = 5; bar < Bars.Count; bar++)
{
if(IsLastPositionActive)
{
if(LastPosition.PositionType

PositionType.Long)
SellAtStop(bar+l, LastPosition, Lowest.Series(Low, 4)[bar-1]);

else
CoverAtStop (bar+l, Las

osition, Highest.Series(High, 4)[bar-1]);

} else

if (BuyAtst

bar+l, Highest.Series(High, 4)[bar-1])
ShortAtStop (bar+l, Lowest.Series(Low, 4)[bar-1]);

null)

Weight
Wealth-Lab 7: Transaction

Priority Property
double Priority
The Priority property comes in to play if there is a situation where there are several trade alerts generated in a simulation, but there is only enough capital to take some of the alerts. In this case, the trades are executed in order of the Positions’

Priority value, with the higher numeric values taking precedence.
Priority is generally used for Strategies that use Buy/ShortAtMarket (or AtClose) entries. For example, assume that your trading system generates 10 orders to place on the next bar, but you have cash enough for 4 orders only. Prior to placing orders, it's possible to determine which of the orders to place
based on some indicator or price.

AtLimit/AtStop Entry Orders

Generally speaking, you should not assign Priority for Strategies that use AtLimit/AtStop entries. Doing so may create a pecking effect since it's often not possible to know which limit (or stop) orders will exccute first when orders are placed for multiple instruments. You can, however, realistically usc the
inverse of the HHmm time-of-day as the correct Priority value. In other words, trades that occur carlier in the day should be assigned higher priority.

Exceptions:

. If the script employs a "multi-dip buyer" strategy, assign a higher Priority valuc to AtLimit orders with higher limit prices. If you don' the possibility exists to exceute orders with lower limit prices first (and vice-versa for ShortAtLimit)
2. You can intentionally peck to determine if an AtLimit/AtStop order occurred at the opening price, and in this case you could assign an equally-high priority to these Positions. This is a valid use of peeking in backtesting.
Warning!

You should employ Priority in Strategies that use multiple order-entry types, such as AtMarket and AtLimit orders. Since the Strategy window does not distinguish between the types, set a higher priority for AtMarket entries so that they are processed before AtLimit/AtStop orders on the same bar.
Note

o Positions are initialized a random Priority value. This means that simulations run consecutively could generate different results if there is not enough capital to take all of the trades generated.

Example
protected override void Execute () (

// Commodity Sel
// Run this

ection Index by Welles Wilder Jr. (c) 1979

trategy in Futures mode on a symbol which has defined margin/point value

int Commission = 8;

int adxPeriod = 14;

DataSeries CSI = new DataSeries(Bars, "Commodity Selection Index (CSI)");
SymbolInfo si = Bars.SymbolInfo;

if(si.Margin > 0)

{

for (int bar = adxPeriod; bar < Bars.Count; bar++)

{

CSI[bar] = ADXR.Series(Bars, adxPeriod)[bar] * ATR.Series(Bars, adxPeriod)[bar] * ((si.PointValue / Math.Sqrt()) * (float) 1 / (150 +)) % 1007
¥

} else
// Will not execute if margin is not specified in Symbol Info Manager
Abort () ;

// @

ot Commodity Selection Index on chart
ChartPane CSIPane

CreatePane (40, true, true);
ries(CSIPane, CSI, Color.Blue, WealthLab.LineStyle.Solid, 2);

PlotSeries(PricePane, Lowest.Series(Close, 10),

Color.Blue, WealthLab.LineStyle.Solid, 1);
ries(PricePane, Highest.Series(Close, 10),

Color.Red, WealthLab.LineStyle.Solid, 1);

for (int bar = 2

bar < Bars.Count; bar++)

if (IslastPositionActive)
{

Position p = Las

Position;
if (p.PositionType

PositionType.Long)
1atStop(bar+l, p, Lowest.Series(se, 10) [bar], "Exit");
if (p.PositionType == PositionType.Short)

raAtStop(bar+l, p, Highest.Series(Close, 10) [bar], "Cover");

if (Close[bar] > Highest.Series(Close, 20)[bar-1])
if (BuyAtMarket (bar+l, Convert.ToString(CSI(bar])) != null)
LastActivePosition.Priority = CSI[bar];

[bar] < Lowest.Series(Close, 20)[bar-1])
ortAtl

rket (bar+l, Convert.ToString(CSI[bar]))
LastActivePosition.Priority = CSI[barl;

null)

Profit / BarsHeld
Also Profit Percent Per Bar:
PPPB

Wealth-Lab 7: Position

ProfitPerBar Property

double ProfitPerBar

Returns the net profit of the Position divided by the number of bars held. If the Position is still active, the number of bars is based onthe total number of bars held as of the last bar of the chart. The ProfitPerBar property is primarily intended for use by Performance Visualizers, not Strategies.

Remarks

« In portfolio simulation mode, all trades are pre-executed using | share per Position, and then position sizing is applicd after the fact. So the ProfitPerBar property will always be based on 1 share while the Strategy is executing.
« The ProfitPerBar property is always available to Performance Visualizers, which exccute afier the position sizing has been applicd.

Wealth-Lab 7:

RiskStopLevel Property
double RiskStopLevel

Specifies the initial stop level (price) of the Position. This stop level is used when you select the Maximum Risk Pct Position Sizing option. This option specifies the maximum amount of capital you are willing to risk on each trade. When this option is selected, you must set the value of RiskStopLevel in your
Strategy code to indicate the initial stop loss value for a newly created Position.

For example, a simple channel breakout system might enter at the highest 20 bar high, and exit at the lowest 20 bar low. Prior to issuing the BuyAtMarket, or BuyAtStop, you should set RiskStopLevel to the lowest Low value of the past 20 bars as the initial stop level for the long Position.
Remarks
o If you select the Maximum Risk Pct position sizing option and do not set RiskStopLevel in your Strategy code, you will receive an error message when attempting to run the Strategy.

* Youmust also be diligent in your Strategy to actually use the established stop level as an exit. If you do not, the Strategy could lose considerably more than the Maximum Risk that you established in the Position Size setting.
« Once a RiskStopLevel is established for a Position, do not change it. The [last] value assigned to a Position's RiskStopLevel is used to determine % Risk sizing, consequently reassigning its value after the Position is established is effectively a peeking error.

Example

protected override void Execute () { ClearDebug () ;
for (int bar = 3; bar < Bars.Count; bar++)

{

if (CumUp.Value (bar,

for (int pos = ActivePo ons.Count - 1; pos >= 0; pos--)

{
Position p = ActivePositions[pos];
PrintDebug (bar + " + p.EntryBar + "\t" + p.RiskStopLevel.ToString("0.00") + "\t" + p.EntrySignal);
sellAtMarket (bar + 1, p);

}

PrintDebug (""

RiskStopLevel = Close[bar] - 1.
if(CumDown.Value (bar, Close, 1) >=
BuyAtMarket (bar + 1, Convert.Tc

)
ring (RiskStop

Quantity
Wealth-Lab 7: Position, Transaction

Shares Property
double Shares
Returns the number of shares (or contracts) that the Position contains.

Remarks

o In portfolio simulation mode, all trades are pre-executed using 1 share per Position, and then position sizing is applied after the fact. So the Shares property will always return 1 while the Strategy is executing.
o The Shares property is always available to Performance Visualizers, which execute after the position sizing has been applied.

Example

using System;
using System.Collections.Generic;
using System.Text;

using System.Drawing;

using WealthLab;

using WealthLab.Indicators;

namespace WealthLab.Strategies
{
public class MyStrategy : WealthScript

te number o

E s of open Positions to ¢
protected void IriteOpenTrades ()
{

ug

ClearDebug () ;

// Cycle through open po.
foreach(Position p in P
if (p.Active)

PrintDebug(p.Shares + " Shares " + p.Bars.Symbol);

protected override void Execute()
{

for (int bar = 20; bar < Bars.Count; bar++)

{

SellhtMarket (bar+l, LastPosition);

i
else
{

BuyAtMarket (bar+l);

// Try this in Raw Profit, with Fixed dollar
WriteOpenTrades () ;

CostBasis
Wealth-Lab 7: Position

Size Property
double Size
Retumns the dollar size of the Position. For equities and mutual funds this is the shares multiplied by the entry price. For futures, this is the contracts (Shares property) multiplied by the margin of the contract (Bars. Margin).

Remarks

« In portfolio simulation mode, all trades are pre-executed using | share per Position, and then position sizing is applicd after the fact. So the Size property will always be based on 1 share while the Strategy is exceuting.
o The Size property is always available to Performance Visualizers, which execute after the position sizing has been applied.

Example

using System;
using System.Collections.Generic;
using System.Text;

using System.Drawing;

using WealthLab;

using WealthLab.Indicators;

namespace WealthLab.Strategies

{
public class MyStrategy : WealthScript
{
// Write number es of open Positions to debug window
protected void WriteOpenTrades ()
ClearDebug () ;
// Cycle through open positions
foreach(Position p in Positions)
if (p.Active)
PrintDebug("Position value in " + p.Bars.Symbol + ": " + String.Format("{0:c)", p.Size));

protected override void Execute()

for (int bar =
{

20; bar < Bars.Count; bar++)

if
{

(IsLastPositionActive)

SellhtMarket (bar+l, LastPosition);

i
else
{
BuyAtMarket (bar+l);

// Run this in Raw Profit mode
WriteOpenTrades () ;

Tag
PositionTag
Wealth-Lab 7: Position
Tag Property
object Tag

The Tag property allows you to store any object with a Position.

Example

protected override void Execute() {
for (int bar = 10; bar < Bars.Count; bar++)

if(IsLastPositionActive)

{

SellAtLimit (bar+l, LastPosition, (double) LastPosition.Tag);
} else
{
if((Closelbar] > Closel[bar-3]) & (Close[bar-3] > Close[bar-5]))

if (BuyAtMarket (bar+l)
/7
LastPosition.Tag

!= null)
Store target price in the position's tag property
(Close[bar]*1.05);

TrailingStopPrice

Wealth-Lab 7: Position
TrailingStop Property
double TrailingStop

Provides access to the most recent trailing stop value for the Position. Trailing stop levels come from calling the SellAtT:

or CoverAtT

althScript methods. The trailing stop is adjusted upward if the most recently passed value is higher than the current stop level.

Example

protected override void Execute() {

PlotStops();
int period = 20;
SMA sma = SMA.Series(Close, period);
PlotSeries(PricePane, sma, Color.BurlyWood, WealthLab.LineStyle.Solid, 1);
for (int bar = 3*period; bar < Bars.Count; bar++)
{
if (IslastPositionActive)
{
Position p = LastActivePosition;
// Initiate a trailing stop after a 5% gain
if (p.MFEAsOfBarPercent(bar) > 5)
{
CoverAtTrailingStop(bar+l, p, smalbar], "Trailing Stop");
}
else
CoverAtStop (bar+l, p, p.EntryPrice * 1.10, "10% Stop Loss");
if((bar Bars.Count-1) & (p.TrailingStop > 0))
DrawLabel (PricePane, "Current trailing stop value = " + p.TrailingStop.ToString(),
1
else

{
// sample entry rule
ShortAtStop (bar+l,

sma[bar]*0.97, "3% band around SMA");

Color.Indigo);

Wealth-Lab 7:

Symbollnfo Object

The Symbollnfo object represents a number of symbol's properties: Decimals, Margin, Point Value, Security Type and Tick.

Remarks

 The SymbolInfo object's properties should not be altered dynamically in a script, and if altered, the final value assigned to a property will change the Property value stored in the Symbollnfo Manager.

QuantityDecimals
DisplayDecimals

Wealth-Lab 7: Symbollnfo
Decimals Property
int Decimals

Specifies the number of decimals that should be used when displaying the price values in the Bars object.

Example

protected override void Execute () {
// Number of decimals
SymbolInfo si = Bars.SymbolInfo;
PrintDebug("Decimals = " + si.Decimals);

Margin
Wealth-Lab 7: Symbollnfo

Margin Property

double Margin

Returns the margin value if the Bars object contains data for a futures contract. The margin value is the amount deducted in backtesting for buying or shorting a single contract.

Example

protected override void Execute() {
// Commodity Selection Index by Welles Wilder Jr. (c) 1979
int Commission = 8;
int adxPeriod = 14;

DataSeries CSI = new DataSeries(Bars, "Commodity Selection Index (CSI)"

SymbolInfo si = Bars.SymbolInfo;

if(si.Margin > 0)
{
for (int bar = adxPeriod; bar < Bars.Count; bar++)

{

CsI[bar] = ADXR.Series(Bars, adxPeriod) [bar] * ATR.Series(Bars,

)

} else

// Will not execute if margin is not specified in Symbol Info Manager

Abort () ;
// Plot Commodity Selection Index on chart

ChartPane CSIPane = CreatePane(75, true, true);
PlotSeries(CSIPane, CSI, Color.Blue, WealthLab.LineStyle.Solid, 2);

PointValue
Wealth-Lab 7: Symbollnfo

PointValue Property

double PointValue

Returns the point value if the Bars object contains data for a futures contract. The point value represents how much profit is gained when a single contract moves up one full point.

Remarks

o The default point value for stocks is 1, but can be adjusted in the Symbol Info Manager.
e See the "Futures Mode" topic in the Reference chapter of the User Guide for more information.

adxPeriod)

[bar]

* ((si.PointValue / Math.Sqrt(si.Margin

)

)

(float)

1/

(

150 + Commission

)

100;

Example

protected override void Execute () {
// "The Price Movement Index", as found in the book by Nauzer Balsara,
// "Money Management Strategies for Futures Traders"

int Sessions = 10; // no. of trading sessions to measure dollar value of price move
double DollarValueInTick, TicksInPriceMove, DollarValue, PriceMovementIndex;

DataSeries PMI = new DataSeries(Bars, "Price Movement Index (PMI)");

SymbolInfo si = Bars.SymbolInfo;
DollarValueInTick = si.Tick * si.PointValue;

if(si.Margin > 0)

{
for (int bar = Sessions; bar < Bars.Count; bar++)
{

TicksInPriceMove = (Highest.Value(bar, High, Sessions) - Lowest.Value(bar,

DollarValue = DollarValueInTick * TicksInPriceMove;

PMI [bar] = DollarValue / si.Margin * 100;
}
} else
// Will not execute if margin was not found in Symbol Info Manager
Abort () ;

// Plot Price Movement Index on chart
ChartPane PMIPane = CreatePane(75, true, true);
PlotSeries(PMIPane, PMI, Color.Blue, WealthLab.LineStyle.Solid, 2);

Market
Wealth-Lab 7: Symbollnfo

SecurityType Property

SecurityType SecurityType

Returns the type of data contained in the Bars object. Possible values are:
Equity
Future

.
.

e MutualFund
e StockOption

Low,

Sessions)

)

/ si.Tick;

Example

protected override void Execute() {
SymbolInfo si = Bars.SymbolInfo;
// Sense equity/future to switch trading logic

if (si.SecurityType
{

= WealthLab.SecurityType.Future)
// Commodities trading logic

}

else

{

// Stocks trading logic

TickSize

Wealth-Lab 7: Symbollnfo
Tick Property
double Tick

Returns the tick value if the Bars object contains data for a futures contract. The tick value represents the granularity of the futures contract. Wealth-Lab will adjust limit and stop order prices so that they conform to the tick level of the contract. For example, if the contract tick
value is 0.25, a BuyAtLimit or ShortAtStop order generated at 12.34 will be rounded to 12.25.

Remarks

« The default tick value for stocks is 0.01, but can be adjusted in the Symbol Info Manager.
e See the "Futures Mode" topic in the Reference chapter of the User Guide for more information.

Example

protected override void Execute() {
double stop;

// Calculate stop value using the Symbol Info Manager data (must be entered)
switch (Bars.SymbolInfo.Symbol)
{
case "CL_RAD":
stop = 1000 * Bars.SymbolInfo.Tick;
break;
case "NG_RAD":
stop 0
break;
default:
stop = 700 * Bars.SymbolInfo.Tick;
break;

* Bars.SymbolInfo.Tick;

PrintDebug("Stop value is " + stop + " ticks"

Wealth-Lab 7:

System
The System category contains various miscellaneous methods that apply to the overall Wealth-Lab system.

Wealth-Lab 7:

Abort
void Abort();

Causes the Strategy to immediately cease execution.

Example

protected override void Execute () {
if (Bars.Count < 1000)
{
Abort () ;

Wealth-Lab 7:

ClearDebug
void ClearDebug();
Clears all Debug Window messages.
Remarks
e Messages accumulate in the Debug Window during Strategy execution and Multi-Symbol Backtest until they are cleared by calling ClearDebug or by clicking the Clear button in the Debug

Window's toolbar.
e When actively debugging a script, call ClearDebug at the beginning to refresh the Debug Window for new messages.

Example
protected override void Execute () { // Clear the Debug window only when executed on the first symbol in the DataSet
if (Bars.Symbol == DataSetSymbols[0])

ClearDebug () ;

// Output the date for each symbol
PrintDebug (string.Format ("{0,-10}{1,12:d}", Bars.Symbol, Date[Bars.Count - 1]));

Wealth-Lab 7:

ClearGloblals

void ClearGlobals();

Completely clears any objects that were stored in the Global Object Pool (GOP) via calls to SetGloblal.
Remarks

o See GetGlobal and SetGlobal for more information on the Global Object Pool.

Example

protected override void Execute() {
// Run example for SetGlobal first

DataSeries average = (DataSeries) GetGlobal ("average");
if(average.Count > 0)
PrintDebug(GetGlobal ("average").ToString() + " found in GOP; BarCount = " + average.Count.ToString());
ClearGlobals();
if (GetGlobal ("average") .ToString() == "")
PrintDebug ("GOP was cleared"); // null
}
AddParameter

Wealth-Lab 7: UserStrategyBase > Parameter
Related
CreateParameter Method
StrategyParameter CreateParameter(string name, double value, double start, double stop, double step);

Used in a Strategy class constructor to create a StrategyParameter type. The specified name appears next to the slider in the Data Panel to identify the parameter, value is the initial default value for
the Strategy Parameter, and step controls the increments between the start and stop minimum and maximum bounds of the parameter.

Remarks
e Strategy Parameters are optional.

e Details about incorporating Strategy Parameters can be found in the WealthScript Language Guide.
e Known issue: Non-white space character cannot be typed if included in CreateParameter after ampersand. After including an ampersand as part of CreateParameter description (e.g.

"L&S"), you will not be able to type the character after the ampserand (i.e. "S"), whitespace excluded, in that Strategy Window after compiling.
o Workaround: Don't use an ampersand for the parameter's string name. If you must, just leave a space after it.

Example

protected override void Execute () {
/* See pre-built Strategies such as the "Glitch Index"
and "Moving Average Crossover", or the ShortAtClose example
in the QuickRef.*/

Wealth-Lab 7:

FlushDebug

void FlushDebug(string message);

Forces any debug messages that have been generated during the Strategy execution (by calling PrintDebug) to be displayed in the Debug Window immediately. Normally, all debug messages are
displayed after the Strategy completes its execution.

Example

protected override void Execute () {
PrintDebug("Now You See Him");
FlushDebug();
System.Windows.Forms.MessageBox.Show("Try commenting FlushDebug", "Message from WL5");
// The debug string will not be seen until the messagebox is closed

Wealth-Lab 7:

GetChartBitmap
Bitmap GetChartBitmap(int width, int height);

Renders an image of the chart, including plotted indicators and manually drawn objects, as a Bitmap of the specified width and height. Use Bitmap.Save method to save the image to a file of a
particular image type.

Example

protected override void Execute() {
// Captures screen image in a PNG file under the WL installation directory
Bitmap bm = GetChartBitmap(500, 300);
bm.Save(Bars.Symbol + ".png", System.Drawing.Imaging.ImageFormat.Png);
//For System.Drawing.Bitmap details, refer to MSDN:
//http://msdn2.microsoft.com/en-us/library/system.drawing.bitmap members.aspx

GetGlobal

Wealth-Lab 7: UserStrategyBase >
Miscellaneous

GetGlobal

object GetGlobal(string key);

The Global Object Pool (GOP) is a global storage area that Strategies can place objects into (SetGlobal) and at some point in the future read objects from (GetGlobal). Objects remain in the GOP
throughout the lifetime of the Wealth-Lab application, and can be shared among Strategies that operate in any context (Strategy Window, Strategy Explorer, etc.)

Each object in the GOP has a unique string key associated with it. GetGlobal returns the object in the GOP with the specified key. If the object was not found, the method returns null.
Remarks

e You will need to cast the resulting object to the type you are expecting before being able to work with it.

Example

protected override void Execute () {
// You should run the SetGlobal example before executing this
// Getting entire series from the global storage is also convenient
// But first we cast the object into DataSeries
DataSeries average = (DataSeries) GetGlobal ("average");
ChartPane averagePane = CreatePane(75, true, false);
PlotSeries(averagePane, average, Color.Black, WealthLab.LineStyle.Solid, 1);

Wealth-Lab 7:

GetTradingLoopStartBar Property
int GetTradingLoopStartBar(int startBar)
Returns the larger of two parameters:

o the passed startBar value, or
o the largest value of the StrategyParameters that have "period" in their Name property.

Especially when optimizing Strategies that use indicators with multiple periods, employ GetTradingLoopStartBar as the initial bar index for the trading loop to prevent runtime errors in the script or
creating trades before all indicators are valid.

Example

using System;

using System.Collections.Generic;
using System.Text;

using System.Drawing;

using WealthLab;

using WealthLab.Indicators;

namespace WealthLab.Strategies

{
public class ChannelBreakoutExample : WealthScript

{
private StrategyParameter pl;
private StrategyParameter p2;

public ChannelBreakoutExample ()

{
pl = CreateParameter ("Period High",20,2,200,20);
p2 = CreateParameter ("Period Low",40,2,200,20);

protected override void Execute()

{
Highest h = Highest.Series (High, pl.Valuelnt);
Lowest 1 = Lowest.Series (Low, p2.Valuelnt);

PlotSeries (PricePane, h >> 1, Color.Red, LineStyle.Solid, 1);
PlotSeries (PricePane, 1 >> 1, Color.Green, LineStyle.Solid, 1);

for (int bar = GetTradingLoopStartBar(l); bar < Bars.Count; bar++)
{

if (IsLastPositionActive)

{
SellAtStop(bar + 1, LastPosition, Lowest.Series (Low, p2.Valuelnt) [bar]);

}
else

{
BuyAtStop(bar + 1, Highest.Series (High, pl.Valuelnt) [bar]);

HasStreamingBar
Wealth-Lab 7: BarHistory > Members

IsStreaming Property

bool IsStreaming

Returns a bool value indicating whether the Strategy is executing on a streaming data source or a static data source. Wealth-Lab executes Strategies on streaming data sources each time a new bar of
data is completely formed for the current chart time scale.

Example

protected override void Execute () {
// For example, use IsStreaming to disable IsLastBarOfDay logic

for (int bar = 20; bar < Bars.Count; bar++)

{
bool LastBar = Bars.IsLastBarOfDay(bar);

if (IsLastPositionActive)
{
if (LastBar & !IsStreaming)

{
SellAtClose (bar, LastPosition, "EOD");

}
else

{
// plain vanilla entry rule
BuyAtStop(bar+l, Highest.Series(High, 20) [bar]);

WriteToDebuglLog

Wealth-Lab 7: UserStrategyBase >
Miscellaneous

PrintDebug

void PrintDebug(string message);
void PrintDebug(object message);
void PrintDebug(Object[] messages);

Prints the string specified by message to the application Debug Window, and displays the Debug Window if it is currently not visible. For performance reasons, Wealth-Lab caches all of the printed
debug strings internally and finally displays them in the Debug Window after the Strategy finishes executing. To force the debug messages to appear during a Strategy execution, call FlushDebug.

Example

protected override void Execute() {
for (int bar = 60; bar < Bars.Count; bar++)
{
// Print the bars where there were SMA crossovers
if (CrossOver(bar, SMA.Series(Close, 20), SMA.Series(Close, 60)))
{
PrintDebug(bar);

Wealth-Lab 7:

PrintStatusBar

void PrintStatusBar(string message);

Displays the string specified in message to the main status bar. Caution: printing too many times to the status bar, for example printing during each bar of data in the Strategy main loop, can result in
a significant slow down of your Strategy execution speed.

Example

protected override void Execute () {
//Execution progress in status bar

for (int bar = 20; bar < Bars.Count; bar++)
PrintStatusBar ("Processing " + (bar * 100 / Bars.Count) + "% complete");

Wealth-Lab 7:

RemoveGlobal

void RemoveGlobal(string key);
void RemoveGlobal(object value);

Removes an object from the Global Object Pool (GOP) by either key or value.
Remarks

o See GetGlobal and SetGlobal for a description of the Global Object Pool.

Example

protected override void Execute () {
// Run example for SetGlobal first
PrintDebug (GetGlobal ("average").ToString())i
RemoveGlobal ("average");
PrintDebug (GetGlobal ("average").ToString()); // null

SetGlobal
Wealth-Lab 7: UserStrategyBase >
Miscellaneous

SetGlobal

void SetGlobal(string key, object value);

The Global Object Pool (GOP) is a global storage area that Strategies can place objects into (SetGlobal) and at some point in the future read object from (GetGlobal). Objects remain in the GOP
throughout the lifetime of the Wealth-Lab application, and can be shared among Strategies that operate in any context (Strategy Window, Strategy Explorer, etc.)

Each object in the GOP has a unique string key associated with it. SetGlobal places an object (value) into the GOP, using the specified key. This will overwrite any existing object that was placed
using the same key.

Example

using System;

using System.Collections.Generic;
using System.Text;

using System.Drawing;

using WealthLab;

namespace WealthLab.Strategies
{
public class MyStrategy : WealthScript
{
// Put series in the global storage
void SetGlobalSeries(string sName, DataSeries series)
{
SetGlobal (sName, series);

protected override void Execute ()
{
SetGlobalSeries ("average", ((High + Low)/2));

StrategyName

Wealth-Lab 7:
UserStrategyBase

StrategyName Property
string StrategyName

Returns the name of the Strategy that is currently being executed.

Example

using System;

using System.IO;

using System.Collections.Generic;
using System.Text;

using System.Drawing;

using WealthLab;

using WealthLab.Indicators;

namespace WealthLab.Strategies
{
public class AlertsToFile : WealthScript
{
// Collects generated alerts and writes them into file
void WriteAlerts ()
{
StreamWriter alertFile;
string str;

if(Alerts.Count > 0)
{
// Open output file
alertFile = new StreamWriter("Alerts.txt", true);
// Strategy Name
alertFile.Write("Alert for strategy name: " + StrategyName + "\r\n");

for(int i = 0; 1 < Alerts.Count; i++

{
WealthLab.Alert a = Alerts[i];

str = ("AlertDate: " 4+ a.AlertDate) + "\r\n" +
("AlertType: " + a.AlertType) + "\r\n" +
("OrderType: " + a.OrderType) + "\r\n" +
("PositionType: " + a.PositionType) + "\r\n" +
("Price: " + a.Price) + "\r\n" +
("Symbol: " + a.Symbol) + "\r\n" +
("Shares: " + a.Shares) + "\r\n" +
("SignalName: " + a.SignalName) + "\r\n" + "\r\n";

// Creates the file containing alerts under WLP installation folder
alertFile.Write(str);

}
alertFile.Close();

protected override void Execute()
{
for (int bar = 40; bar < Bars.Count; bar++)
{
if (IsLastPositionActive)
SellAtStop(bar+l, LastPosition, Lowest.Series(Bars.Low, 20) [bar],
else
BuyAtStop(bar+l, Highest.Series(Bars.High, 40) [bar], "Entry");

WriteAlerts () ;

"Exit"

)i

IndicatorBase Class
Wealth-Lab 7:
IndicatorBase

Technical Indicators

The Technical Indicators category contains information on all of the indicators that are available in the WealthLab.Indicators standard indicators library. Indicators are all DataSeries objects, and are
created in scripts by using the Series method, as shown below:

DataSeries sma20 = SMA.Series(Close, 20);

Additionally, some indicators support a Value method that you can use to calculate and return the value of an indicator on a specific bar. Value methods always recalculate their value each time they
are called.

double smaValue = SMA .Value(bar, Close, 20);

ToDaily

Wealth-Lab 7: TimeSeriesCompressor

Time Frames
The Time Frames category contains methods you can use to access different time frames (such as weekly or monthly) within your Strategy.

Wealth-Lab 7:

AddCalendarDays
int AddCalendarDays(bool interpolate)

Adds all missing calendar days to the chart data, including weekends, holidays, and any other non-trading day. Newly added bars are considered "synthetic", and these bar numbers return true when
Bars.InSynthetic is called. AddCalendarDays returns the number of new bars that were added.

The value of the inserted bars depends on the interpolate parameter. If interpolate is false, the new bars assume the OHLC values of the next actual bar. If interpolate is true, the OHLC values of the
new bars are calculated using linear interpolation between the previous bar and the next actual bar. Note that interpolating values will result in the bars being created based on future information (next
bar's value) so be careful if using these bars in trading system development.

Remarks

AddCalendarDays is available in Daily scale only.

AddCalendarDays is not compatible with streaming Strategies.

Be careful to avoid peeking as AddCalendarDays uses future data.

Known issue: AddCalendarDays breaks chart scroll

Known issue: Bars.IsSynthetic wrongly marks the first trading bar after a series of synthetic bars added by AddCalendarDays. 1t does not work as documented, i.e. synthetic bars are not
marked.

o Known issue: AddCalendarDays always peeks, even when the interpolate parameter is set to false. A work-around to that behavior can be found in this forum thread.

Example

protected override void Execute() {

if(Bars.Scale ==)

{
DrawLabel (PricePane, Bars.Count + " bars before", Color.Black);
int added = AddCalendarDays(true);
DrawLabel (PricePane, Bars.Count + " bars after", Color.Black);
DrawLabel (PricePane, "Added " + added + " bars", Color.Blue);

} else

DrawLabel (PricePane, "Daily data required...", Color.LightCoral);

Wealth-Lab 7:

RestoreScale

void RestoreScale();

Restores the data scale that the Strategy is currently operating on back to the original scale that it was invoked on. The internal data scale can be changed by calling the various SetScale methods.
Remarks

e RestoreScale restores the data scale, but preserves the current context symbol (which may have been changed via SetContext).

Example

protected override void Execute () {

// Chart SMA from 30 minute compressed data on a lower scale
SetScaleCompressed(30);
DataSeries SMA10_60 = SMA.Series(Close, 10);
RestoreScale();
SMA10_60 = Synchronize (SMA10_60);

PlotSeries(PricePane, SMA10_60, Color.Blue, WealthLab.LineStyle.Solid, 1);

ToCompressed(int interval) ?- coming
soon!

Wealth-Lab 7: TimeSeriesCompressor

SetScaleCompressed
void SetScaleCompressed(int barInterval);

Changes the base time scale of the Strategy to a more highly compressed intraday scale. The context Bars is replaced with a new Bars object that is compressed to the specified barInterval. For
example, if the source data is a 5 minute chart, you can compress the data to 10, 15, or 30 minute scale (any multiple of 5). Any indicators, and external symbols produced will also be in the
compressed scale. If you need to plot any of the compressed DataSeries or Bars, you must first expand them to the original intraday scale using the Synchronize method. Call RestoreScale to revert
the Strategy back to the original intraday time scale.

Important!

You must call RestoreScale() to return to the original time scale particularly for plotting and executing trading signals. In general, only remain in a compressed scale to create indicators and
immediately revert to the base scale by calling RestoreScale().

Remarks

o SetScaleCompressed only works on charts using intraday scaled data.

e You can compress data in Minute, Second, or Tick scales. The resulting compressed data retains the corresponding source base scale. It is currently not possible through WealthScript
methods to compress second or tick based data to minute, for example, but this is possible by directly using the BarScaleConvertor utility class.

o SetScaleCompressed operates only on the standard OHLC/V DataSeries of the Bars object and does not apply to manually created and/or Named DataSeries.

https://www.wealth-lab.com/Forum/Posts/Adding-synthetic-bars-to-synchronize-data-between-different-countries-38708

Example

protected override void Execute() {
// The chart will depict 20-minute SMA and RSI
// on compressed and original scales

DataSeries SMA20 = SMA.Series(Close, 20);
SetScaleCompressed(15);

DataSeries SMA20_15 = SMA.Series(Close, 20);
RestoreScale() ;

SMA20_15 = Synchronize (SMA20_15);

PlotSeries (PricePane, SMA20, Color.Red, WealthLab.LineStyle.Solid, 1);
PlotSeries (PricePane, SMA20_15, Color.Blue, WealthLab.LineStyle.Solid, 1);

ChartPane RSIPane = CreatePane(50, true, true);
SetScaleCompressed(15);

DataSeries RSI20_15 = RSI.Series(Close, 20);
RestoreScale() ;

RSI20_15 = Synchronize (RSI20_15);

PlotSeries(RSIPane, RSI.Series(Close, 20), Color.Red, WealthLab.LineStyle.Solid, 1);
PlotSeries(RSIPane, RSI20_15, Color.Blue, WealthLab.LineStyle.Solid, 1);

ToDaily

Wealth-Lab 7: TimeSeriesCompressor

SetScaleDaily

void SetScaleDaily();

Changes the base time scale of the Strategy to daily, from intraday. The context Bars is replaced with a new Bars object compressed to the daily scale. Any indicators, and external symbols produced
will also be in daily scale. If you need to plot any of the compressed daily DataSeries or Bars, you must first expand them to the original intraday scale using the Synchronize method. Call
RestoreScale to revert the Strategy back to the original time scale.

Important!

You must call RestoreScale() to return to the original time scale particularly for plotting and executing trading signals. In general, only remain in a compressed scale to create indicators and
immediately revert to the base scale by calling RestoreScale().

Remarks

o SetScaleDaily only works on charts using intraday scaled data.
o SetScaleDaily operates only on the standard OHLC/V DataSeries of the Bars object and does not apply to manually created and/or Named DataSeries.

Example

protected override void Execute() {
//Look for a Daily SMA CrossOver in our intraday chart
if (Bars.IsIntraday
{
SetScaleDaily () ;
DataSeries SMAl = SMA.Series(Close, 10);
DataSeries SMA2 = SMA.Series(Close, 40);
RestoreScale() ;
SMA1l = Synchronize (SMAl);
SMA2 = Synchronize (SMA2);
PlotSeries(PricePane, SMAl, Color.Red, WealthLab.LineStyle.Solid, 1);
PlotSeries(PricePane, SMA2, Color.Blue, WealthLab.LineStyle.Solid, 1);
for (int bar = 20; bar < Bars.Count; bar++)
{
if (CrossOver(bar, SMAl, SMA2))
SetBackgroundColor (bar, Color.Blue);

ToMonthly

Wealth-Lab 7: TimeSeriesCompressor

SetScaleMonthly
void SetScaleMonthly();

Changes the base time scale of the Strategy to monthly. The context Bars is replaced with a new Bars object compressed to the monthly scale. Any indicators, and external symbols produced will also
be in monthly scale. If you need to plot any of the compressed DataSeries or Bars, you must first expand them to the original scale using the Synchronize method. Call RestoreScale to revert the
Strategy back to the original time scale.

Important!

You must call RestoreScale() to return to the original time scale particularly for plotting and executing trading signals. In general, only remain in a compressed scale to create indicators and
immediately revert to the base scale by calling RestoreScale().

Remarks

o SetScaleMonthly operates only on the standard OHLC/V DataSeries of the Bars object and does not apply to manually created and/or Named DataSeries.
o Known issue: Applying SetScaleMonthly to a compressed Weekly chart (source data is Daily) of an external symbol may result in an incorrect compressed data (month has more than 4
weeks). Use a workaround from this forum thread.

Example

protected override void Execute() {

https://www.wealth-lab.com/Forum/Posts/SetScaleWeekly-amp-GetExternalSeries-31707/Page/1#195010

// Plot the 5 month RSI in our daily chart

SetScaleMonthly () ;

DataSeries MonthlyRSI = RSI.Series(Close, 5);

RestoreScale();

MonthlyRSI = Synchronize (MonthlyRSI);

ChartPane RSIPane = CreatePane(50, true, true);

PlotSeries(RSIPane, MonthlyRSI, Color.Navy, WealthLab.LineStyle.Solid, 2);

ToWeekly

Wealth-Lab 7: TimeSeriesCompressor

SetScaleWeekly

void SetScaleWeekly();

Changes the base time scale of the Strategy to weekly. The context Bars is replaced with a new Bars object compressed to the weekly scale. Any indicators, and external symbols produced will also
be in weekly scale. If you need to plot any of the compressed DataSeries or Bars, you must first expand them to the original scale using the Synchronize method. Call RestoreScale to revert the

Strategy back to the original time scale.

Important!

You must call RestoreScale() to return to the original time scale particularly for plotting and executing trading signals. In general, only remain in a compressed scale to create indicators and
immediately revert to the base scale by calling RestoreScale().

Remarks

o SetScaleWeekly operates only on the standard OHLC/V DataSeries of the Bars object and does not apply to manually created and/or Named DataSeries.

Example

protected override void Execute() {
// Plot the weekly MACD in our daily chart
SetScaleWeekly () ;
DataSeries WeeklyMACD = MACD.Series(Close);
RestoreScale();
WeeklyMACD = Synchronize (WeeklyMACD) ;
ChartPane MACDPane = CreatePane(50, true, true);
PlotSeries (MACDPane, WeeklyMACD, Color.Maroon, WealthLab.LineStyle.Histogram, 2);

Wealth-Lab 7:

Trading
The Trading category contains methods used to enter and exit long and short Positions.

Wealth-Lab 7:

AutoProfitLevel Property

double AutoProfitLevel

Specifies the initial profit target level for the next Position to be created. The value, analogous to RiskStopLevel, is the price at which the same-bar Limit order should be placed. It is valid for any BarScale.
Remarks

o AutoProfitLevel should be set if "same bar exits" wish to be used in real-time trading. It does not have any effect in backtesting.

Example

protected override void Execute () {
PlotStops();
int beml = Bars.Count - 1;
DataSeries smal = SMA.Series (Close, 8);
DataSeries sma2 = SMA.Series (Close, 20);
PlotSeries (PricePane, smal, Color.Green, LineStyle.Solid, 1);
PlotSeries (PricePane, sma2, Color.Red, LineStyle.Solid, 1);

for (int bar = Bars.FirstActualBar + 20; bar < Bars.Count; bar++)
{
if (IsLastPositionActive)
{
Position p = LastPosition;
SellAtLimit (bar+l, p, p.AutoProfitLevel * 1.01);
}
else if (CrossOver(bar, smal, sma2))
{
AutoProfitLevel = Bars.High[bar];
// also use same-bar exit for backtesting
if (BuyAtMarket (bar+l) != null && bar < bcml)
SellAtLimit (bar + 1, LastPosition, LastPosition.AutoPro

tlevel, "same-bar exit");

PlaceTrade(bars, TransactionType.Buy,
OrderType.MarketClose);

Wealth-Lab 7: UserStrategyBase > Trading

BuyAtClose

Position BuyAtClose(int bar, string signalName);
Position BuyAtClose(int bar);

Buys a new long position at the specified bar, using the closing price of the bar as the entry price. The position size will be calculated based on the closing price of the previous bar. Returns a new Position object that represents the newly established position.
Remarks

o Slippage, when activated, can affect the trade's execution price.
e The optional signalName parameter will appear in the Strategy window trade list report.

Example

protected override void Execute() {
for (int bar = 3; bar < Bars.Count; bar++)
{
if (!IsLastPositionActive)

{

// Three consecutive lower closes
if((Bars.Close[bar] < Bars.Close[bar-1]) &
(Bars.Close[bar-1] < Bars.Close[bar-2]) &
(Bars.Close[bar-2] < Bars.Close[bar-3]))
BuyAtClose(bar);
}
if (IsLastPositionActive)
{
SellAtMarket(bar+l, LastPosition);

PlaceTrade(bars, TransactionType.Buy, OrderType.Limit, limitPrice,
signalName);

Wealth-Lab 7: UserStrategyBase > Trading

BuyAtLimit

Position BuyAtLimit(int bar, double limitPrice, string signalName);
Position BuyAtLimit(int bar, double limitPrice);

Buys a new long position at the specified bar, using a limit order at the specified limitPrice. The position size will be calculated based on the limitPrice. If the price of the bar reaches the limitPrice or lower, BuyAtLimit returns a new Position object that represents the
newly established position. If the limitPrice was not reached, BuyAtLimit returns null.

Remarks
e Slippage, when activated, can cause limit orders to fail, even if the price of the bar reaches the limitPrice.

o If the market open below the limitPrice, the entry price of the position will be set to the market open price of the bar.
o The optional signalName parameter will appear in the Strategy window trade list report.

Example

protected override void Execute () {
for (int bar = 20; bar < Bars.Count; bar++)
{
if (IsLastPositionActive)
{
//code your exit rules here
)
else
{
// Buy at limit last bar's high minus 1.5 * 5-period ATR
BuyAtLimit (bar+l, High[bar]-1.5*ATR.Series(Bars, 5)[bar]);

PlaceTrade(bars, TransactionType.Buy,
OrderType.Market);

Wealth-Lab 7: UserStrategyBase > Trading
BuyAtMarket

Position BuyAtMarket(int bar, string signalName);
Position BuyAtMarket(int bar);

Buys a new long position at the specified bar, using the open price of the bar as the entry price. The position size will be calculated based on the closin;
Remarks

« Slippage, when activated, can affect the trade's execution price.
e The optional signalName parameter will appear in the Strategy window trade list report.

g price of the previous bar.

Example

protected override void Execute() {
// Open long position on the following bar based on this bar's indicator values

DataSeries sma = SMA.Series(Close, 20);
for (int bar = 20; bar < Bars.Count; bart+
{
if (IsLastPositionActive)
{
// Exit trade after 5 days
if (bar+l - LastPosition.EntryBar >= 5
SellAtMarket(bar+l, LastPosition, "Time-Based");
}
else
{
// Buy at market next bar recent closing price crosses over the 20-period SMA
if (ver(bar, Close, sma)

BuyAtMarket (bar+l, "SMA CrossOver");

PlaceTrade(bars, TransactionType.Buy, OrderType.Stop, stopPrice,
signalName);

Wealth-Lab 7: UserStrategyBase > Trading

BuyAtStop

Position BuyAtStop(int bar, double stopPrice, string signalName);
Position BuyAtStop(int bar, double stopPrice);

Buys a new long position at the specified bar, using a stop order at the specified stopPrice. The position size will be calculated based on the stopPrice.
established position. If the stopPrice was not reached, BuyAtStop returns null.

Remarks
o Slippage, when activated, can affect the trade's execution price.

« Ifthe market open above the stopPrice, the entry price of the position will be set to the market open price of the bar.
o The optional signalName parameter will appear in the Strategy window trade list report.

. If the price of the bar reaches the stopPrice or higher, BuyAtStop returns a new Position object that represents the newly

Example

protected override void Execute () {
DataSeries peak = Highest.Series(High,
for (int bar = 20; bar < Bars.Count; bar

{

= 20);
= ++)

if (IslastPositionActive)
{
//code your exit rules here

/7.

ter when the 20-period high is touched

op(bar+l, peak(bar], "Breakout");

CloseAtTrailingStop

Wealth-Lab 7: UserStrategyBase >
Trading

CoverAtAutoTrailingStop

bool CoverAtAutoTrailingStop(int bar, Position pos, double triggerPct, double pi alPct, string sig]
bool CoverAtAutoTrailingStop(int bar, Position pos, double triggerPct, double profitReversalPct);

Covers the short Position specified in the pos parameter at the specified bar, using a trailing stop order. The trailing stop is initiated only after the posit
profitReversalPct parameter. This value indicates the percentage reversal in the Position's profit that should be used as a stop level.

For example, assume we specify 30 for profitReversalPct, and our short Position had an entry price of $12 and is currently at $10 (a 20% profit so far).
The total profit so far is $12 - $10 = $2
30% of $2 is $0.60

The stop order will be placed at $10 + $0.60 = $10.60

ion reaches the profit level specified in the triggerPet parameter. The stop price is calculated based on the

The trailing stop price is maintained with the Position, and it is modified only when the calculated stop price is below the current trailing stop price. CoverAtAutoTrailingStop returns a bool value indicating whether the price hit the current trailing stop level or above, and
the Position was covered. CoverAtAutoTrailingStop will also return false if the bar specified is greater than the number of bars on the chart. In this case, a cover Alert will be generated instead.

Remarks

Slippage, when activated, can affect a trade's execution price.

If the market open above the current trailing stop price, the position will be covered at the market open price of the bar.
The optional signalName parameter will appear in the Strategy window trade list report.

To cover all active short Positions, specify Position.AllPositions in the pos parameter.

The current trailing stop price level is available by accessing the TrailingStop Position property.

e s e e

Example

protected override void Execute() {
int period
PlotStops ()
for (int bar

{

20;

period; bar < Bars.Count; bar++)

if (IsLastPositionActive)

{

Position p = LastActivePosition;

// Protect a 10% gain after giving back 25% to market
if (!CoverAtAutoTrailingStop(bar+l, p, 10, 25, "AutoStop"))
// Stop loss at 10%
CoverAtStop (bar+l, p, p.EntryPrice * 1.10, "Stop Loss");
)
else
// Ei er on channel breakdown
ShortAtstop (bar+l, Lowest.Series(Low, period) [bar]);

PlaceTrade(bars, TransactionType.Cover,
OrderType.MarketClose);

Wealth-Lab 7: UserStrategyBase > Trading

CoverAtClose

bool CoverAtClose(int bar, Position pos, string signalName);
bool CoverAtClose(int bar, Position pos);

Covers the short Position specified in the pos parameter at the specified bar, using the closing price of the bar as the exit price.
instead.

. CoverAtClose will return false if the bar specified is greater than the number of bars on the chart. In this case, a cover Alert will be generated

Remarks

o Slippage, when activated, can affect the trade's execution price.
« The optional signalName parameter will appear in the Strategy window trade list report.
e To cover all active short Positions, specify Position.AllPositions in the pos parameter.

Example

protected override void Execute () {
for (int bar = 2; bar < Bars.Count; bar++)
{
if (IsLastPositionActive)
{
// Exit short after 20 days on close
if (bar+l - LastPosition.EntryBar >= 20)
CoverAtClose(bar, LastPosition, "20 day exit");
)
else
{
//code your entry rules here
op (bar+l, Low[bar])

PlaceTrade(bars, TransactionType.Cover, OrderType.Limit, limitPrice,
signalName);

Wealth-Lab 7: UserStrategyBase > Trading

CoverAtLimit

bool CoverAtLimit(int bar, Position pos, double limitPrice, string signalName);
bool CoverAtLimit(int bar, Position pos, double limitPrice);

Covers the short Position specified in the pos parameter at the specified bar, using a limit order at the specified limitPrice. CoverAtLimit returns a bool value indicating whether the price reached the limitPrice or below, and the Position was sold. CoverAtLimit will also
return false if the bar specified is greater than the number of bars on the chart. In this case, a cover Alert will be generated instead.

Remarks

Slippage, when activated, can cause a limit order to fail, even if the price reaches the limitPrice.

If the market opens below the limitPrice, the position will be covered at the market open of the bar.
The optional signalName parameter will appear in the Strategy window trade list report.

To cover all active short Positions, specify Position.AllPositions in the pos parameter.

e s e

Example

protected override void Execute () {
for (int bar = 50; bar < Bars.Count; bar++)
{
double adaptiveTarget;
double big = 4;
double regular
if (IsLastPositionActive)

{

Position p = LastPosition;
if (ROC.Value(bar, ADX.Series(Bars, 14), 2) >0
{
adaptiveTarget = p.EntryPrice - big * ATR.Value(bar, Bars, 20);
}
else
adaptiveTarget = p.EntryPrice - regular * ATR.Value(bar, Bars, 20);
// Doubly Adaptive Profit Objective by Chuck LeBeau
CoverAtLimit(bar + 1, LastPosition, adaptiveTarget, "Adaptive Profit Target");

else
{
//code your entry rules here
op(bar+l, Lowest.Value(bar, Low, 20));

PlaceTrade(bars, TransactionType.Cover, OrderType.Market);
Wealth-Lab 7: UserStrategyBase > Trading

CoverAtMarket

bool CoverAtMarket(int bar, Position pos, string signalName);
bool CoverAtMarket(int bar, Position pos);

Covers the short Position specified in the pos parameter at the specified bar, using the open price of the bar as the exit price. CoverAtMarket will return false if the bar specified is greater than the number of bars on the chart. In this case, a cover Alert will be generated
instead.

Remarks
o Slippage, when activated, can affect the trade's execution price.

« The optional signalName parameter will appear in the Strategy window trade list report.
« To coverall active short Positions, specify Position.AllPositions in the pos parameter.

Example

protected override void Execute() {
DataSeries kl = KeltnerLower.Series(Bars, 10, 10);

DataSeries kh = KeltnerUpper.Series(Bars, 10, 10);
PlotSeries(PricePane, kh, Color.Blue, LineStyle.Solid, 1);
PlotSeries(PricePane, k1, Color.Red, LineStyle.Solid, 1);
for (int bar = 50; bar < Bars.Count; bar++)
{
if (IsLastPositionActive)
{
// Cover at market when price crosses over the Keltner UpperBand
if (CrossOver(bar, Close, kh))
verAtMarket (bar + 1, LastPosition, "Keltner CrossOver");

// Short if c
if (CrossUnder(bar,

under the Keltner LowerBand
Close, k1))
ShortAtMarket (bar + 1, "Keltner CrossUnder");

e cr:

PlaceTrade(bars, TransactionType.Cover, OrderType.Stop, stopPrice,
signalName);

Wealth-Lab 7: UserStrategyBase > Trading

CoverAtStop

bool CoverAtStop(int bar, Position pos, double stopPrice, string signalName);
bool CoverAtStop(int bar, Position pos, double stopPrice);

Covers the short Position specified in the pos parameter at the specified bar, using a stop order at the specified stopPrice. CoverAtStop returns a bool value indicating whether the price hit the stopPrice or above, and the Position was covered. CoverAtStop will also return
false if the bar specified is greater than the number of bars on the chart. In this case, a cover Alert will be generated instead.

Remarks

« Slippage, when activated, can affect a trade's execution price.

o If the market open above the stopPrice, the position will be sold at the market open price of the bar.
o The optional signalName parameter will appear in the Strategy window trade list report.
« To coverall active short Positions, specify Position.AllPositions in the pos parameter.

Example

protected override void Execute () {
for (int bar = 20; bar < Bars.Count; bar++)
{
if (IsLastPositionActive)
{
// Cover the short position if prices move against us by 10%
CoverA!

p(bar+l, LastPosition, LastPosition.EntryPrice * 1.1, "10% Stop")
}
else
{
//code your entry rules here
ShortAtMarket (bar+l);

Wealth-Lab 7: UserStrategyBase >
Trading

CoverAtTrailingStop

bool CoverAtTrailingStop(int bar, Position pos, double stopPrice, string signalName);
bool CoverAtTrailingStop(int bar, Position pos, double stopPrice);

Covers the short Position specified in the pos parameter at the specified bar, using a trailing stop order. The trailing stop price is maintained with the Position, and it is modified only when the specified stopPrice is below the current trailing stop price. CoverAtTrailingStop

returns a bool value indicating whether the price hit the current trailing stop level or above, and the Position was covered. CoverAtTrailingStop will also return false if the bar specified is greater than the number of bars on the chart. In this case, a cover Alert will be
generated instead.

Remarks

Slippage, when activated, can affect a trade's exceution price.

If the market open above the current trailing stop price, the position will be covered at the market open price of the bar.
The optional signalName parameter will appear in the Strategy window trade list report.

To cover all active short Positions, specify Position.AllPositions in the pos parameter.

The current trailing stop price level is available by accessing the TrailingStop Position property.

DECECRT Y

Example

protected override void Execute() {
PlotStops ()
int period = 20;
SMA sma = SMA.Series(Close, period);
PlotSeries(PricePane, sma, Color.BurlyWood, WealthLab.LineStyle.Solid, 1);
for (int bar = 3*period; bar < Bars.Count; bar++)
{
if (IsLastPositionActive)
{
Position p = LastActivePosition;
// Initiate a trailing stop after a 5% gain
if (p.MFEAsOfBarPercent(bar) > 5)
{

CoverAtTrailin

op(bar+l, p, smalbar], "Trailing Stop")
}
else
CoveraAtStop (bar+l, p, p.EntryPrice * 1.10, "10% Stop Loss");
}
else
{
// sample entry rule
ShortAtStop (bar+l, sma(bar]*0.97, "3% band around SMA");

CloseAtTrailingStop

Wealth-Lab 7: UserStrategyBase >

Trading
ExitAtAutoTrailingStop

bool ExitAtAutoTrailingStop(int bar, Position pos, double triggerPct, double profitReversalPct, string signalName);
bool ExitAtTrailingStop(int bar, Position pos, double triggerPct, double profitReversalPct);

Provides a shortcut that allows you to use a common exit method for both long and short positions. Internally, ExitAtAutoTrailingStop routes to either SellAtAutoTrailingStop or CoverAtAutoTrailingStop, depending on the PositionType of the Position that was passed
to it.

Example

protected override void Execute () {
double atr, entry, stop;
int period = 1 // ATR period
double mult // ATR multiplier
for (int bar = period * 2; bar < Bars.Count; bart+)

{

2;

atr

= ATR.Value(bar, Bars, period) * mult;
entry = Bars.Close[bar] + atr;
if (IsLastPositionActive)
{
Position p = LastActivePosition;
stop = p.EntryPrice;
a 10% gain after giving back 25% to market
!ExitAtAutoTrailingStop(bar+l, p, 10, 25, "AutoStop"))
// Buto-sensing stop loss at 10%
if (p.PositionType == PositionType.Long)
{

stop = p.EntryPrice * 0.9;
}
else

stop = p.EntryPrice * 1.1;
ExitAtStop(bar+l, p, stop, "Stop Loss");

}
else
{
// "Serendipity entry" (c) Chuck LeBeau
if op(bar+l, entry) null)
{
entry = Bars.Close[bar] - atr*mult;
op(bar+l, entry);
}
}

ClosePosition(..,
OrderType.MarketClose,..)

Wealth-Lab 7: UserStrategyBase > Trading

ExitAtClose

bool ExitAtClose(int bar, Position pos, string signalName);

bool ExitAtClose(int bar, Position pos);

Provides a shortcut that allows you to use a common exit method for both long and short positions. Internally, ExitAtClose routes to either SellAtClose or CoverAtClose, depending on the PositionType of the Position that was passed to it.

Example

protected override void Execute() {
// Gap Closer II (Consecutive Gap Closer
bool gapDown, gapUp;
for (int bar = 4; bar < Bars.Count-1; bar++)
{
if (IsLastPositionActive)
{
Position p = LastPosition;
// Take no risk overnight
ExitAtClose (bar, p);
)
else
{
// consecutive gap up
gapUp = (Bars.Open[bar+1] > Bars.High[bar]) &
(Bars.Open[bar] > Bars.High[bar-1]) &
// 1st gap not filled
(Bars.Low([bar] > Bars.High[bar-1]) &
// 1st gap was larger than 2nd gap

((Bars.Open[bar]-Bars.High[bar-1]) > (Bars.Open[bar+l]-Bars.High[bar]));
// consecutive gap down
gapDown = (Bars.Open[bar+1] < Bars.Low[bar]) &

(Bars.Open[bar] < Bars.Low[bar-1]) &
// 1st gap not filled
(Bars.Low[bar-1] > Bars.High[bar]
// 1st gap was larger than 2nd gap
((Bars.Low[bar-1]-Bars.Open[bar]) > (Bars.Low[bar]-Bars.Open[bar+1]
// Buy/short the gap
if (gapDown)
BuyAtMarket (bar+l, "Gap Down")
else if (gapUp)
ShortAtMarket (bar+l, "Gap Up")

B

ClosePosition(.., OrderType.Limit, limitPrice,..)
Wealth-Lab 7: UserStrategyBase > Trading
ExitAtLimit

bool ExitAtLimit(int bar, Position pos, double limitPrice, string signalName);
bool ExitAtLimit(int bar, Position pos, double limitPrice);

Provides a shortcut that allows you to use a common exit method for both long and short positions. Internally, ExitAtLimit routes to either SellAtLimit or CoverAtLimit, depending on the PositionType of the Position that was passed to it.

Example

protected override void Execute() {
double entry, profit;
int period = 1
double mult ; // ATR multiplier
DataSeries hi = Highest.Series (High, period);
DataSeries lo = Lowest.Series (Low, period);
for (int bar = 20; bar < Bars.Count; bar++)
{

// period

// Exit either position at limit @ entry price +/- 2 times the 20-period ATR
if (IsLastPositionActive)
{
Position p = LastPosition;
// The power of "?2" ternary operator:
profit = (LastPosition.PositionType
ExitAtLimit (bar, LastPosition, profit);

}
else
{
// plain vanilla channel breakout
if (BuyAtstop(bar+l, hi[bar], "Long") == null)
{
ShortAtstop (bar+l, lo[bar], "short");
}
}

ClosePosition(.., OrderType.Market,..)

Wealth-Lab 7: UserStrategyBase >
Trading

ExitAtMarket

bool ExitAtMarket(int bar, Position pos, string signalName);
bool ExitAtMarket(int bar, Position pos);

PositionType.Long) ? p.EntryPrice + ATR.Value (bar,

Bars,

period) * mult

profit

= p.EntryPrice - ATR.Value (bar,

Bars,

Provides a shortcut that allows you to use a common exit method for both long and short positions. Internally, ExitAtMarket routes to cither SellAtMarket or CoverAtMarket, depending on the PositionType of the Position that was passed to it.

period)

* mult;

Example

protected override void Execute () {
int period = 20; // SMA period
bool Event;
DataSeries sma = SMA.Series(Close, period);
DataSeries hi = Highest.Series (High, period);
DataSeries lo = Lowest.Series (Low, period);
PlotSeries(PricePane, hi, Color.Blue, WealthLab.LineStyle.Dotted, 2);
PlotSeries(PricePane, lo, Color.Red, WealthLab.LineStyle.Dotted, 2);
PlotSeries(PricePane, sma, Color.DarkGreen, WealthLab.LineStyle.Solid, 2);
for (int bar = 20; bar < Bars.Count; bar++)
{
// Exit position at market on a SMA CrossUnder/CrossOver
if (IsLastPositionActive)
{
Position p = LastPosition;
// Ternary operator "?" fits with the Exit* operator syntax
Event = (LastPosition.PositionType == PositionType.Long) ? (CrossUnder(bar, Close,
if (Event)
{

ExitAtMarket (bar+l, p);
}
else
{
// plain vanilla channel breakout
if (BuyAtStop(bar+l, hil[bar]) == null
{
ShortAtStop (bar+l, lol[bar]);

sma)

)

(CrossOver(bar,

Close,

sma)

)i

ClosePosition(.., OrderType.Stop, stopPrice,..)

Wealth-Lab 7: UserStrategyBase > Trading
ExitAtStop

bool ExitAtStop(int bar, Position pos, double stopPrice, string signalName);
bool ExitAtStop(int bar, Position pos, double stopPrice):

Provides a shortcut that allows you to use a common exit method for both long and short positions. Internally, ExitAtStop routes to either SellAtStop or CoverAtStop, depending on the PositionType of the Position that was passed to it.

Example

protected override void Execute() {
double entry, level;
int period = 2
double mult =
DataSeries hi

// period
// ATR multiplier
Highest.Series (High, period);
DataSeries lo = Lowest.Series (Low, period);
DataSeries atr = ATR.Series(Bars, period);
for (int bar = 20; bar < Bars.Count; bar++

{

// Exit position at a respective Chandelier stop
if (IsLastPosi

{

ionActive)

Position p = LastPosition;
level = (LastPosition.PositionType == PositionType.Long) ? hi(bar] - (atr[bar] * mult) : lo[bar] + (atr[bar] * mult);
op(bar+l, p, level, "Chandelier exit");

// plain vanilla channel breakout
if (BuyAtstop(bar+l, hi[bar], "Long") == null)
{

ShortA

Stop (bar+l, lo(bar], "Short");

Wealth-Lab 7: UserStrategyBase >
Trading

ExitAtTrailingStop

bool ExitAtTrailingStop(int bar, Position pos, double stopPrice, string signalName);
bool ExitAtTrailingStop(int bar, Position pos, double stopPrice):

Provides a shortcut that allows you to use a common exit method for both long and short positions. Internally, ExitAtTrailingStop routes to either SellAtTraili or CoverAtTraili ing on the PositionType of the Position that was passed to it.

Example

protected override void Execute () {
double entry, level;
int period = 20;
double mult =
DataSeries hi
DataSeries lo

// period

; // ATR multiplier
Highest.Series (High, period);
Lowest.Series (Low, period);
DataSeries atr = ATR.Series(Bars, period);
PlotStops () ;

for (int bar = 20; bar < Bars.Count; bar++

{

// Exit position at respective Chandelier stop

if (IsLastPositionActive)

{
Position p = LastPosition;
level = (LastPosition.PositionType == PositionType.Long) ? hilbar] - (atr[bar] * mult) : lolbar] + (atr[bar] * mult);
ExitAtTrailingStop(bar+l, p, level, "Trailing Chandelier");

)
else
{
// plain vanilla channel breakout
if (BuyAtStop(bar+l, hi[bar]) == null)

op(bar+l, lo[bar]);

Wealth-Lab 7:

RiskStopLevel Property
double RiskStopLevel

Specifies the initial stop level (price) for the next Position to be created. This stop level is used when you select the Maximum Risk Pct Position Sizing option. This option specifies the maximum amount of capital you are willing to risk on each trade. When this option is
selected, you must set the value of RiskStopLevel in your Strategy code to indicate the initial stop loss value for a newly created Position.

For example, a simple channel breakout system might enter at the highest 20 bar high, and exit at the lowest 20 bar low. Prior to issuing the BuyAtMarket, or BuyAtStop, you should sct RiskStopLevel to the lowest Low value of the past 20 bars as the initial stop level for
the long Position.

Remarks
« Ifyou select the Maximum Risk Pet position sizing option and do not set RiskStopLevel in your Strategy code, you will receive an error message when attempting to run the Strategy.

e You must also be diligent in your Strategy to actually use the established stop level as an exit. If you do not, the Strategy could lose i more than the i Risk that you i in the Position Size setting.
« Once a RiskStopLevel is established for a Position, do not change it. The [last] value assigned to a Position's RiskStopLevel is used to determine % Risk sizing, consequently reassigning its value after the Position is established is effectively a peeking error.

Example

protected override void Execute() {
PlotStops();
for (int bar = 30; bar < Bars.Count; bar++)
{
ATR atr = ATR.Series(Bars, 14);
if (IsLastPositionActive)

{

Position p = LastPosition;

// Pr top: "Yo-Yo Exit" by Chuck eau
SellAtStop(bar+l, p, p.RiskStoplevel, "Yo-Yo Stop");
SellAtLimit (bar+l, p, p.EntryPrice*l.l, "10% profit");

ctive

}

else

{
//Set our risk stop at an ATR unit below the
RiskStopLevel = (Bars.Low[bar] - l*atr[bar
BuyAtStop(bar+l, Bars.Close[bar]+2*atr[bar], "Volatility Breakout");

CloseAtTr:

Wealth-Lab 7: UserStrategyBase >
Trading

ngStop

SellAtAutoTrailingStop

bool SellAtAutoTrailingStop(int bar, Position pos, double triggerPct, double profitReversalPct, string signalName);
bool SellAtAutoTrailingStop(int bar, Position pos, double triggerPet, double profitReversalPet);

Sells the Position specified in the pos parameter at the specified bar, using a trailing stop order. The trailing stop is initiated only after the position reaches the profit level specified in the triggerPet parameter. The stop price is calculated based on the pr salPct
parameter. This value indicates the percentage reversal in the Position's profit that should be used as a stop level.

For example, assume we specify 30 for profitReversalPct, and our Position had an entry price of $10 and is currently at $12 (a 20% profit so far).
The total profit so far is $12 - $10 = $2

30% of $2 is $0.60

The stop order will be placed at $12 - $0.60 = $11.40

The trailing stop price is maintained with the Position, and it is modified only when the calculated stop price is above the current trailing stop price. SellAtAutoTrailingStop returns a bool value indicating whether the price hit the current trailing stop level or below, and the
Position was sold. SellAtAutoTrailingStop will also return false if the bar specified is greater than the number of bars on the chart. In this case, a sell Alert will be generated instead.

Remarks

Slippage, when activated, can affect a trade's execution price.

If the market open below the current trailing stop price, the position will be sold at the market open price of the bar.
The optional signalName parameter will appear in the Strategy window trade list report.

To sell all active long Positions, specify Position.AllPositions in the pos parameter.

The current trailing stop price level is available by accessing the TrailingStop Position property.

DECECRT Y

Example

protected override void Execute () {
int period = 20;
DataSeries kama = KAMA.Series(Bars.Close, 20);
PlotStops () ;
for (int bar = period*3; bar < Bars.Count; bar++)
{
if (IsLastPositionActive)
{
Position p = LastActivePosition;
// Protect a 10% gain er giving back 25% to market
if (!SellAtAutoTrailingStop(bar+l, p, 10, 25, "10% AutoStop"))
op(bar+l, p, p.EntryPrice * 0.90, "1

% stop loss");

ter when closing cross over KAMA
ossOver(bar, Close, kama))
op(bar+l, Close[bar]);

PlaceTrade(bars, TransactionType.Sell,
OrderType.MarketClose);

Wealth-Lab 7: UserStrategyBase > Trading

SellAtClose

bool SellAtClose(int bar, Position pos, string signalName);
bool SellAtClose(int bar, Position pos);

Sells the Position specified in the pos parameter at the specified bar, using the closing price of the bar as the exit price. SellAtClose will return false if the bar specified is greater than the number of bars on the chart. In this case, a sell Alert will be generated instead.
Remarks
o Slippage, when activated, can affect the trade's execution price.

e The optional signalName parameter will appear in the Strategy window trade list report.
e To sell all active long Positions, specify Position.AllPositions in the pos parameter.

Example

protected override void Execute () {
for (int bar = 2; bar < Bars.Count; bar++
{
if (IsLastPositionActive)
{
// Exit long after 20 days
if (bar+l - LastPosition.EntryBar >= 20)
SellAtClose(bar, LastPosition, "20 day exit");
)
else
{
//code your entry rules here
BuyA! p(bar+l, High[bar]);

PlaceTrade(bars, TransactionType.Sell, OrderType.Limit, limitPrice,
signalName);

Wealth-Lab 7: UserStrategyBase > Trading

SellAtLimit

bool Sell AtLimit(int bar, Position pos, double limitPrice, string signalName);
bool SellAtLimit(int bar, Position pos, double limitPrice);

Sells the Position specified in the pos parameter at the specified bar, using a limit order at the specified limitPrice. SellAtLimit returns a bool value indicating whether the price reached the limitPrice or above, and the Position was sold. SellAtLimit will also return false if
the bar specified is greater than the number of bars on the chart. In this case, a sell Alert will be generated instead.

Remarks

Slippage, when activated, can cause a limit order to fail, even if the price reaches the limitPrice.
If the market opens above the limitPrice, the position will be sold at the market open of the bar.
The optional signalName parameter will appear in the Strategy window trade list report.

To sell all active long Positions, specify Position.AllPositions in the pos parameter.

oo o e

Example

protected override void Execute () {
DataSeries high = Highest.Series(High, 10);
DataSeries emal = EMA.Series(Close, 2, WealthLab.Indicators.EMACalculation.Modern);
DataSeries ema2 = EMA.Series(Close, 10, WealthLab.Indicators.EMACalculation.Modern);
PlotSeries(PricePane, emal, Color.LightBlue, WealthLab.LineStyle.Solid, 2);
PlotSeries(PricePane, ema2, Color.ForestGreen, WealthLab.LineStyle.Solid, 2);
for (int bar = 30; bar < Bars.Count; bar++)

ositionActive)

recent high + some percent
211AtLimit (bar+l, LastPosition, high[bar]*1.02, "Limit Sell"))

PrintDebug("Sold");

i-Trend EMA" entry
(bar, emal, ema2))
BuyAtMarket (bar+l);

PlaceTrade(bars, TransactionType.Sell, OrderType.Market);

Wealth-Lab 7: UserStrategyBase > Trading

SellAtMarket

bool Sell AtMarket(int bar, Position pos, string signalName);
bool SellAtMarket(int bar, Position pos);

Sells the Position specified in the pos parameter at the specified bar, using the open price of the bar as the exit price. SellAtMarket will return false if the bar specified is greater than the number of bars on the chart. In this case, a sell Alert will be generated instead.
Remarks
« Slippage, when activated, can affect the trade's execution price.

e The optional signalName parameter will appear in the Strategy window trade list report.
e To sell all active long Positions, specify Position.AllPositions in the pos parameter.

Example

protected override void Execute () {
int shift = 4;
DataSeries dmal = SMA.Series(Close, 7) >> shift;
DataSeries dma2 = SMA.Series(Close, 25) >> shift;
PlotSeries(PricePane, dmal, Color.Green, LineStyle.Solid, 1);
PlotSeries(PricePane, dma2, Color.Blue, LineStyle.Solid, 1);
for (int bar = 30; bar < Bars.Count; bar++)
{
if (IsLastPositionActive)
{
// Displaced Moving Average (DMA) strategy exit
if (CrossUnder(bar, dmal, dma2))
SellAtMarket (bar+l, LastPosition, "DMA CrossUnder");

}
else
{
// Displaced Moving Average (DMA) strategy entry
if (CrossOver(bar, dmal, dma2))
BuyAtMarket (bar+l, "DMA CrossOver");

PlaceTrade(bars, TransactionType.Sell, OrderType.Stop, stopPrice,
signalName);

Wealth-Lab 7: UserStrategyBase > Trading

SellAtStop

bool Sell AtStop(int bar, Position pos, double stopPrice, string signalName);
bool SellAtStop(int bar, Position pos, double stopPrice);

Sells the Position specified in the pos parameter at the specified bar, using a stop order at the specified stopPrice. SellAtStop returns a bool value indicating whether the price hit the stopPrice or below, and the Position was sold. SellAtStop will also return false if the bar
specified is greater than the number of bars on the chart. In this case, a sell Alert will be generated instead.

Remarks

Slippage, when activated, can affect a trade's execution price.

If the market open below the stopPrice, the position will be sold at the market open price of the bar.
The optional signalName parameter will appear in the Strategy window trade list report.

To sell all active long Positions, specify Position.AllPositions in the pos parameter.

e s e

Example

protected override void Execute() {
for (int bar 20; bar < Bars.Count; bar++)

{

if (IsLastPositionActive)
{
Position p = LastPosition;

// Cover the long positio “es move against us 7%

SellatStop(bar+l, p, p.EntryPrice * 0.¢

//code your entry rules here
BuyAtMarket (bar+l);

Wealth-Lab 7: UserStrategyBase >
Trading

SellAtTrailingStop

bool Sell AtTrailingStop(int bar, Position pos, double stopPrice, string signalName);
bool SellAtTrailingStop(int bar, Position pos, double stopPrice);

Sells the Position specified in the pos parameter at the specified bar, using a trailing stop order. The trailing stop price is maintained with the Position, and it is modified only when the specified stopPrice is above the current trailing stop price. SellAtTrailingStop returns a
bool value indicating whether the price hit the current trailing stop level or below, and the Position was sold. SellAtTrailingStop will also return false if the bar specified is greater than the number of bars on the chart. In this case, a sell Alert will be generated instead.

Remarks

Slippage, when activated, can affect a trade's exceution price.

If the market open below the current trailing stop price, the position will be sold at the market open price of the bar.
The optional signalName parameter will appear in the Strategy window trade list report.

To sell all active long Positions, specify Position.AllPositions in the pos parameter.

The current trailing stop price level is available by accessing the TrailingStop Position property.

DECECRT Y

Example

protected override void Execute() {
PlotStops();
int period = 20;
DataSeries atr = ATR.Series(Bars, period);
for (int bar period; bar < Bars.Count; bar++)
{

if (IsLastPositionActive)
{
Position p = LastActivePosition;
SellAtStop(bar+l, p, p.EntryPrice * 0.95, "5% Stop Loss");
// Trailing Chandelier exit (Chuck LeBeau) at 40-bar highest high minus 3 ATR units
SellAtTrailingStop(bar+l, p, Highest.Series(High, period) [bar]-3*atr[bar], "Trailing Stop");

}
else
{
// sample entry rule
BuyAtStop(bar+l, Highest.Series(High, period) [bar]);

Transaction t = PlaceTrade(bars, ...,
t.Quantity = numShares;

Wealth-Lab 7: Transaction

SetShareSize

double SetShareSize(double shares)

Use SetShareSize to assign a fixed number of Shares (or contracts) per Position in your Strategy. Subsequent trades will use the number of Shares or contracts that you specified.

Remarks

e In Raw Profit modes, SetShareSize does not have effect. It applies to Portfolio Simulation mode only.
o When using SetShareSize, you must choose the radio button for WealthScript Override (SetShareSize) in the Position Sizing control to enable SetShareSize to influence position sizing.

Example

protected override void Execute () {
SMA sma = SMA.Series(Close, 50);

for (int bar = sma.FirstValidValue; bar < Bars.Count; bar++)
{
if (IsLastPositionActive)
{
/* Exit after N days */

Position p = LastPosition;
if (bar+l - p.EntryBar >= 3)
tMarket (bar+l, p, "Timed");

}
else
{
/* When the Close is below the SMA,
size the new position twice the normal */

if(Close[bar] > sma[bar])
SetShareSize(1000);
else
SetShareSize(2000);

BuyAtLimit (bar+l, Close[bar]*0.93);

PlaceTrade(bars, TransactionType.Short,
OrderType.MarketClose);

Wealth-Lab 7: UserStrategyBase > Trading

ShortAtClose

Position ShortAtClose(int bar, string signalName);
Position ShortAtClose(int bar);

Enters a new short position at the specified bar, using the closing price of the bar as the entry price. The position size will be calculated based on the closing price of the previous bar. Returns a new Position object that represents the newly established short position.
Remarks

« Slippage, when activated, can affect the trade's execution price.
o The optional signalName parameter will appear in the Strategy window trade list report.

Example

using System;

using System.Collections.Generic;
using System.Text;

using System.Drawing;

using WealthLab;

using WealthLab.Indicators;

namespace WealthLab.Strategies
{
public class ShortAtCloseDemo : WealthScript
{
//Lowest Low parameter
private StrategyParameter per;

public ShortAtCloseDemo ()
{
per = CreateParameter ("CumUp period, days", 10, 10, 30, 5);

protected override void Execute ()
{
//Obtain period from parameter
int period = per.Valuelnt;

CumUp cumUp = CumUp.Series(Bars.Close, period);
ChartPane cu = CreatePane(50, true, false);
PlotSeries(cu, cumUp, Color.Red, WealthLab.LineStyle.Dotted, 2);

for (int bar = period; bar < Bars.Count; bar++)
{
if (!IsLastPositionActive)
{
if(Close[bar] > SMA.Series(Close,2)[bar])
// Short at Close on CumUp >= 5 in 10 bars
if (cumUp[bar] >= 5)

ShortAtClose(bar);
}
if (IsLastPositionActive)
{
// .. Exit Rules
CoverAtMarket (bar+l, LastPosition);

PlaceTrade(bars, TransactionType.Short, OrderType.Limit, limitPrice,

signalName);
Wealth-Lab 7: UserStrategyBase > Trading

ShortAtLimit

Position ShortAtLimit(int bar, double limitPrice, string signalName);
Position ShortAtLimit(int bar, double limitPrice);

Enters a new short position at the specified bar, using a limit order at the specified limitPrice. The position size will be calculated based on the limitPrice. If the price of the bar reaches the limitPrice or higher, ShortAtLimit returns a new Position object that represents the
newly established short position. If the limitPrice was not reached, ShortAtLimit returns null.

Remarks

o Slippage, when activated, can cause limit orders to fail, even if the price of the bar reaches the limitPrice.
« Ifthe market open above the limitPrice, the entry price of the position will be set to the market open price of the bar.
o The optional signalName parameter will appear in the Strategy window trade list report.

Example

protected override void Execute () {
Bars benchmark = GetExternalSymbol("QQQQ", true);
ChartPane mkt = CreatePane(35, true, false);
DataSeries adx = ADX.Series(Bars, 14);

DataSeries adx_market = ADX.Series(benchmark, 14);
DataSeries diP = DIPlus.Series(Bars, 14);
DataSeries diM = DIMinus.Series(Bars, 14);
PlotSeries(mkt, adx, Color.Red, WealthLab.LineStyle.Solid, 1);
PlotSeries(mkt, adx market, Color.DarkRed, WealthLab.LineStyle.Solid, 2);
for (int bar = 30; bar < Bars.Count; bar++)
{
if (!IsLastPositionActive)
{
// short symbol when it lags some general market benchmark
if (adx[bar] < adx market[bar])
if(diP[bar] < diM[bar])
// Short next bar at the limit of 20-period high
ShortAtLimit (bar+l, Lowest.Value(bar, Bars.High, 20), "Short @ Limit");
}
if (IsLastPositionActive)
{
//code your exit rules here
/7.

PlaceTrade(bars, TransactionType.Short, OrderType.Market);
Wealth-Lab 7: UserStrategyBase > Trading
ShortAtMarket

Position ShortAtMarket(int bar, string signalName);
Position ShortAtMarket(int bar);

Enters a new short position at the specified bar, using the open price of the bar as the entry price. The position size will be calculated based on the closing price of the previous bar. Returns a new Position object that represents the newly established short position.

Remarks

o Slippage, when activated, can affect the trade's execution price.
o The optional signalName parameter will appear in the Strategy window trade list report.

Example

protected override void Execute () {
DataSeries rsi = RSI.Series(Close, 14);
ChartPane rsiPane = CreatePane(40, true, false);
PlotSeries(rsiPane, rsi, Color.Chartreuse, WealthLab.LineStyle.Dotted, 2);
DrawHorzLine (rsiPane, 70, Color.Red, WealthLab.LineStyle.Dashed, 1);
for (int bar = 30; bar < Bars.Count; bar++)
{

if (IsLastPositionActive)

// Exit after 10 days
if (bar+l - LastPosition.EntryBar == 10)
CoverAtMarket (bar+l, LastPosition, "Time-Based");

tablish a short position if RSI gets overbought
RSI.Series(Close, 14)[bar] > 70)
ShortAtMarket (bar+l, "RSI Short Signal");

// E
(

PlaceTrade(bars, TransactionType.Short, OrderType.Stop, stopPrice,
signalName);

Wealth-Lab 7: UserStrategyBase > Trading

ShortAtStop

Position ShortAtStop(int bar, double stopPrice, string signalName);
Position ShortAtStop(int bar, double stopPrice);

Enters a new short position at the specified bar, using a stop order at the specified stopPrice. The position size will be calculated based on the stopPrice. If the price of the bar reaches the stopPrice or lower, ShortAtStop returns a new Position object that represents the
newly established short position. If the stopPrice was not reached, ShortAtStop returns null.

Remarks
« Slippage, when activated, can affect the trade's execution price.

« If the market open below the stopPrice, the entry price of the position will be set to the market open price of the bar.
e The optional signalName parameter will appear in the Strategy window trade list report.

Example

protected override void Execute () {
for (int bar = 5; bar < Bars.Count; bar++)

{

if (!IsLastPositionActive)
{

// "Oops" (Larry Williams)

if (Bars.Open[bar] > Bars.High[bar-1])
ortAtStop (bar, Bars.Low([bar-1], "Oops");

H

if (IsLastPositionActive)

ExitAtClose (bar, LastPosition);

